

Table Grape Irrigation Benchmarking 2002 - 2011

Horticulture Services

Table Grape Irrigation Benchmarking

Seasons 2002 - 2011

Prepared for: Department of Sustainability and Environment

Prepared by: Maxine Schache, Richard Ratna and Linda Pollock

Department of Primary Industries Telephone 03 5051 4500 Email <u>maxine.schache@dpi.vic.gov.au</u>, <u>linda.pollock@dpi.vic.gov.au</u>

If you would like to receive this information / publication in an accessible format (such as print or audio) please call the Customer Service Centre on 136 186 TTY 1800 122 969, or email customer.service@dpi.vic.gov.au.

Published by the Department of Primary Industries Horticulture Services, April 2012

© The State of Victoria 2012.

This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968.

Authorised by the Department of Primary Industries 1 Spring Street, Melbourne 3000.

ISBN xx-x-xxxxx-xxx-x (print) ISBN xxx-x-xxxxx-xxx-x (online)

Disclaimer

This publication may be of assistance to you but the State of Victoria and its employees do not guarantee that the publication is without flaw of any kind or is wholly appropriate for your particular purposes and therefore disclaims all liability for any error, loss or other consequence which may arise from you relying on any information in this publication.

For more information about DPI go to www.dpi.vic.gov.au or phone the Customer Service Centre on 136 186.

Contents

List o	of Figures	4
List o	of Tables	5
Exec	utive summary	7
1	Introduction	8
1.1	Background	8
1.2	Irrigation benchmarking	8
1.3	Report style	8
2	Method	9
2.1	Data collection	9
2.2	Indicators of irrigation performance	9
2.3	Site locations	10
3	Results	11
3.1	Yield and irrigation water applied	11
3.2	Irrigation application efficiency	19
3.3	Crop production per ML of water applied	25
3.4	Gross return per ML of water applied	29
3.5	Cost of water per tonne of fruit	31
3.6	Gross return per dollar water input	32
Conc	clusions	33
Арре	endix	34
A.	Further reading	34
В.	Performance indicator formulas	35
C.	Performance indicator tables	36
D.	Interpretation of box plots	52

List of Figures

Figure Title

1	Site locations included in study	10
2	Box plot of yield between 2003 and 2011	11
3	Box plot of water applied between 2003 and 2011	11
4	Box plot of yield per irrigation system type for 2009, 2010 and 2011	13
5	Box plot of water applied per irrigation system type for 2009, 2010 and 2011	13
6a	Yield at sites using drip irrigation grouped by variety and ranked with respect to yield	14
6b	Yield at sites using low level irrigation grouped by variety and ranked with respect to yield	15
7a	Water applied at sites using drip irrigation grouped by variety and ranked with respect to yield	16
7b	Water applied at sites using low level irrigation grouped by variety and ranked with respect to yield	17
8	Box plot of yield per irrigation scheduling method for 2009, 2010 and 2011	19
9	Box plot of water applied per irrigation scheduling method for 2009, 2010 and 2011	19
10	Box plot of irrigation application efficiency between 2003 and 2011	20
11	Box plot of irrigation application efficiency per irrigation system type for 2009, 2010 and 2011	21
12a	Application efficiency at sites using drip irrigation grouped by variety	22
12b	Application efficiency at sites using low level irrigation grouped by variety	23
13	Box plot of irrigation application efficiency per irrigation scheduling method for 2009, 2010 and 2011	24
14	Box plot of crop production per megalitre of water applied between 2003 and 2011	25
15	Box plot of crop production per megalitre of water applied per irrigation system type for 2009, 2010 and 2011	25
16a	Crop production per megalitre of water applied at sites using drip irrigation grouped by variety	26
16b	Crop production per megalitre of water applied at sites using low level irrigation grouped by variety	27
17	Box plot of gross return per megalitre of water applied between 2003 and 2011	29
18	Box plot of cost of water per tonne of fruit between 2003 and 2011	31
19	Box plot of gross return per dollar water input between 2003 and 2011	32

List of Tables

Table	Title	Page
1	Number of participating growers, field sites and total area per season	9
2	Number of sites, average seasonal amount of water applied and yield - Irrigation system type comparison	12
3a	Sites using drip irrigation ranked with respect to the highest yield	14
3b	Sites using low level irrigation ranked with respect to the highest yield	15
4a	Sites using drip irrigation ranked with respect to the lowest water applied	16
4b	Sites using low level irrigation ranked with respect to the lowest water applied	17
5	Number of sites, average seasonal amount of water applied and yield - Irrigation scheduling method comparison	18
6	Percentage of sites within, over and under the recommended 85-90% range of application efficiency	20
7	Average application efficiency - Irrigation system type comparison	21
8a	Sites using drip irrigation ranked with respect to the highest application efficiency	22
8b	Sites using low level irrigation ranked with respect to the highest application efficiency	23
9	Average application efficiency - Irrigation scheduling method comparison	24
10	Average crop production per megalitre of water applied - Irrigation system type comparison	25
11a	Sites using drip irrigation ranked with respect to the highest crop production per megalitre of water applied	26
11b	Sites using low level irrigation ranked with respect to the highest crop production per megalitre of water applied	27
12	Average crop production per megalitre of water applied - Variety and irrigation system type comparison	28
13	Average gross return per megalitre of water applied (\$/ML) - Irrigation system type comparison	29
14	Average gross return per megalitre of water applied (\$/ML) - Variety comparison	30
15	Average cost of water per tonne of fruit - Irrigation system type comparison	31
16	Average gross return per dollar water input (\$/\$) - Irrigation system type comparison	32

Executive summary

The DPI Table Grape Irrigation Benchmarking Project was initiated during the season 2001/02. It was established primarily as a tool for identifying "best irrigation management practices" with the goal of improving irrigators' performance and efficiency.

This annual report contains nine years of growers' data, from Victoria and New South Wales, covering seasons 2002/03 to 2010/11. Examples of the main information gathered for each site were the amount of water used, the variety, the irrigation system and scheduling method used, the pumping and water costs, and the crop yield and gross return.

While the number of growers in the study has remained around 13 to 14 over the years, in season 2010/11 the number of sites (65) and associated area (132.9 ha) have increased by 26 and 72.6 ha respectively when compared to season 2002/03. It should be noted that this is not a representative sample of growers and care must be adopted when attempting to extrapolate the results to the broader irrigation community.

The grape varieties planted at the different sites were Autumn Royal, Calmeria, Cardinal, Crimson Seedless, Flame Seedless, Ohanez, Menindee Seedless, Rally Seedless, Red Emperor, Red Globe, Thompson Seedless and Zante Currant.

The extreme rainfall events experienced by many table grape growers in the 2010-2011 irrigation season led to many sites in this study being water logged or prone to high disease pressure, both of which led to lower quality and yields.

The average yield of all varieties for drip irrigated sites in 2011 (5.7 t/ha) was less than half that of 2010, and 21.8 t/ha lower compared to the average of 2009. In the case of low level irrigated sites, the average yield in 2011(5.4 t/ha) was 8.6 t/ha and 18.5 t/ha lower than the averages of 2010 and 2009 respectively.

For the first time since 2005 there were more participants using capacitance probes (27) than reported experience (18) as their scheduling method. There was virtually no difference in the average water applied for each of the scheduling methods reported in 2011 Irrespective of the irrigation scheduling method used, the seasonal averages in 2011 were among the lowest of the nine seasons studied.

The median values for water applied for drip (4.01 Ml/ha) and low level (4.27 Ml/ha) irrigated sites were very similar in the 2011 season. In 2011 75% of the low level sites used 4.57 Ml/ha or less while 4.61 Ml/ha was the median for the drip irrigated sites. The medians for the previous two years for low level irrigated sites were 9.21 Ml/ha in 2010 and 8.31 Ml/Ha in 2009 and 6.59 Ml/ha and 7.39 Ml/ha for drip irrigated sites in the same years. The season 20010/11 resulted in 13.8% of sites scoring within the target 85-90% application efficiency range with a further 33.8% scoring over 90%. This result indicates that there are still many sites that could improve their timing and amount of irrigation.

The average application efficiencies for sites with drip irrigation were more consistent over the nine years and were also higher than those for low level irrigation. In 2011, the application efficiency for low level irrigation was 21% less than the average for drip irrigation, and 1% below its own nine-year average of 86%. The nine-year averages show that drip irrigated sites had an application efficiency average of 86% while the low level irrigated sites only averaged 74%.

The crop production per megalitre results for both drip (0.55 t/Ml) and low level (0.39t/Ml) irrigated sites were the lowest on record. Despite the drop in water applied for each of the irrigation systems (see Figure 5) the reduced yields (see Figure 4) had a greater influence on these results. The results from previous years ranged from 1.4 t/Ml (2007) to 4.85 t/Ml (2003) for drip irrigated sites and 1.8 t/Ml (2006) to 3.47 t/Ml (2004) for low level irrigated sites. In 2011 the range was greater for drip irrigated sites (0 to 6.9 t/Ml) than for the low level irrigated sites (0 to 4.58 t/Ml).

The results for 2011 shows that both drip (1.4 t/Ml) and low level (1.3t/Ml) irrigated sites average crop production per Megalitre were the lowest on record. Both were well under their long term average with drip 1.1 t/Ml less. The different varieties grown each had an average crop production per Megalitre of water in 2011 lower than in 2010 and all were under their longterm average except for low level irrigated Flame Seedless.

The median value for gross return per megalitre for 2011 (\$1107/MI) was lowest on record, with the previous lowest being \$3067/MI in 2005 compared to the highest of \$6753/MI in 2009. The range of values in 2011 was very large being \$0/MI to \$21653/MI which is the second highest value on record. For only the second time since the start of the project low level irrigated sites (\$3976/MI) showed a higher gross return per megalitre than their drip irrigated counterparts (\$3078/MI). Both the low level (-\$560/MI) and drip (-\$1935/MI) had lower averages in 2011 than their long term averages. Drip irrigated sites have a higher long term average than the low level sites.

The gross return and cost performance indicators should be treated only as technical information, as they were determined using a partial system approach. A sound economic analysis was beyond the scope of the study, since it would have involved a whole system approach and more complex analysis, e.g. marginal analysis.

1 Introduction

1.1 Background

This irrigation benchmarking study was initiated during the season 2001/02 in the table grape industry and was established primarily as a tool for monitoring growers' irrigation performances. It contributes to the partnership project "Benchmarking for Irrigated Table Grapes, Dried Vine Fruit, Almonds, Open Hydroponics and Centre Pivot Irrigated Potatoes" between the Department of Primary Industries (DPI), Department of Sustainability (DSE) and the Mallee Catchment Management Authority (MCMA). This current annual report contains nine years of data covering seasons 2002/03 to 2010/11.

1.2 Irrigation benchmarking

The DPI Table Grape Irrigation Benchmarking Project aims to identify "best irrigation management practices" in the table grape industry with the goal of improving performance and efficiency. It is an expansion of previous successful benchmarking studies undertaken in the Mallee for wine grapes, citrus, potatoes, dried vine fruits and almonds.

The project has evolved as a result of interest shown by growers, extension officers and policy makers in supporting improvement of irrigation management and water use efficiency.

Information collected during the benchmarking study includes:

- · The amount of water used per crop and variety
- · Irrigation scheduling methods used
- · Irrigation systems used
- · Pumping and water costs
- · Yields and returns

1.3 Report style

The report style adopted since 2009 ensures a consistent and effective mode of communication and is compliant with the Victorian Government Branding Policy and the DPI visual style guide.

The report uses bar charts to display, in the body of the report and for each site, the last three years of the most important performance indicators as identified by the participants, i.e. crop yield, water applied, irrigation application efficiency and crop production per megalitre of water applied. As all other performance indicators are deemed to be of value, and to allow for trend analysis, all indices for the nine years are included in Appendix C.

2 Method

2.1 Data collection

Table grape growers from Victoria and New South Wales completed questionnaires on their irrigation practices for the irrigation seasons 2002/03 to 2010/11. The data collected included irrigation system and pump details, crop varieties, vine spacing, area of the site, age of vines, irrigation scheduling methods used, soil types and yields. The questions were aimed at developing a better understanding of each grower's level of irrigation performance.

Weather data was also entered to match site locations and water costs were calculated using information provided by the water authorities.

While the number of growers has remained relatively stable over the years (Table 1), the number of sites and associated area in 2010/11 has increased by 26 and 72.6 ha respectively when compared to 2002/03. It should be noted this may not be a representative sample of growers and care must be adopted when attempting to extrapolate the results to the broader irrigation community.

Table 1: Number of participating growers, field sites and total area per season

Season	Number of	Number of	Area
	growers	sites	(ha)
2002/03	13	39	60.3
2003/04	13	39	60.3
2004/05	13	39	70.4
2005/06	14	51	81.3
2006/07	14	45	84.7
2007/08	14	49	99.5
2008/09	14	61	131.7
2009/10	14	64	131.9
2010/11	13	65	132.9

The irrigation systems used included low-level sprinklers, overhead sprinklers, drip and furrow irrigation. The grape varieties planted at the different sites were Autumn Royal, Calmeria, Cardinal, Crimson Seedless, Fantasy, Flame Seedless, Ohanez, Menindee Seedless, Midnight Beauty, Rally Seedless, Red Emperor, Red Globe, Thompson Seedless and Zante Currant.

2.2 Indicators of irrigation performance

The data collected was analysed using the "Irrigation Benchmarking Module", database software developed by the South Australia Irrigated Crop Management Service, Primary Industries and Resources South Australia (PIRSA). A data consistency check of the database and processed data was performed at the end of each crop season.

Performance indicators were defined using the format from previous studies (Skewes and Meissner, 1997). The results from each site were compared and ranked. These allow growers to compare their own irrigation management practices with others from season to season.

Yield, which is the traditional measure for vineyard performance and is represented in tonnes per hectare (t/ha), and several other performance indicators were used to compare every site (details of all performance indicators can be viewed in Appendix C). The main indices used were:

- Yield
- Irrigation water applied
- Irrigation application efficiency
- · Crop production per Megalitre of water applied
- Gross return per Megalitre of water applied
- · Cost of water per tonne of fruit
- · Gross return per dollar of water input

Furthermore, an evaluation study (Pollock, 2009), which had as its objective to review and improve the usability of the graphical data and other information in the annual report, produced the following main recommendations:

- The use of bar charts in the body of the report to display the last three years' results of the following performance indicators:
 - Yield and irrigation water applied
 - Irrigation application efficiency
 - Crop production per Megalitre of water applied
- The use of tables and box plots to show performance indicators in the body of the report
- The display, for each site, of all performance indicators for all seasons in Appendix C

An efficient irrigator is defined in this report as one who applies the correct amount of water at the right time to meet the crop water requirement. It is generally recommended to apply no more than 115% of the root zone soil moisture deficit, i.e. to use only 10-15% of the irrigation water for leaching any harmful salts from the root zone.

The present study focuses solely on irrigation management practices and not on other aspects that could be affecting crop production. For example, soil water holding capacity, crop load, canopy size, crop and emitter spacing, fertiliser and herbicide application practices, soil types and variation in environmental conditions are not discussed in this report.

Irrigation benchmarking is best viewed over a number of years to derive more interpretable results and to minimise inevitable seasonal variation. Such variation can be seen in cyclical pricing that can influence gross returns in any particular year. The results should not be interpreted as being definitive since this report was compiled from data covering a limited time span and a small sample of industry growers, who operate in a district of great diversity.

2.3 Site locations

Growers were located in Gol Gol, Irymple, Menindee, Merbein, Mildura, Red Cliffs, Robinvale, Sunnycliffs and Yelta as indicated on the map depicted in Figure 1.

3 Results

3.1 Yield and irrigation water applied

The yield and irrigation water applied at all sites for each season are shown as box plots in Figures 2 and 3. The lower and upper ends of the coloured box indicate the 25th and 75th percentiles respectively while the inside band indicates the median (50th percentile). In other words, these percentiles respectively indicate the level below which 25%, 75% and 50% of the sites fall. Conversely, the same percentiles can also be interpreted as the level above which 75%, 25% and 50% of the sites are located. The ends at the vertical broken lines indicate the range of observed values while single dots represent outliers (see Appendix D for an example of how to interpret box plots).

Figure 2 shows the box plot of yields in 2011 was the lowest over the period studied. The yields at many sites were affected by diseases and loss in fruit quality following the extreme rainfall events experienced at many of the sites in this study during summer. Only 25% of sites had yields above 8.6 t/ha in 2011, which is less than half the number of sites that achieved similar or better yields in the year with the second lowest box plot, i.e. 2010. The median yield in 2011 was 1.9 t/ha, while the medians in the other years were 12.6 t/ha (2010), 23.2 t/ha (2009), 15.1 t/ha (2008), 18.8 t/ha (2007), 18.0 t/ha (2006), 22.0 t/ha (2005), 25.0 t/ha (2004) and 24.8 t/ha (2003).

In terms of water applied (Figure 3), the results at most sites in 2011 were clearly lower than in the previous years. This was mainly the result of the above normal rainfall events during summer in season 2010/11that satisfied a great part of the peak crop water demand and reduced the need for supplementary irrigation. In 2011, 75% of the sites applied less than 4.6 ML/ha. The median water applied in that year (4.0 ML/ha) was 2.7 ML/ha lower than the median in 2010 (6.7 ML/ha), while the medians in the other years varied between 6.0 ML/ha (2008) and 8.9 ML/ha (2005).

3.1.3 Yield and water applied per irrigation system type

Table 2 shows the number of sites in the study with drip irrigation has considerably increased over the years, i.e. up from 9 in 2002/03 to 57 in 2010/11. Conversely, from 29 sites with low level irrigation in 2002/03, there were only 8 sites left in 2010/11. It should also be noted that there were no longer participants with furrow and overhead irrigation in the study in 2010/11. The changes over the period studied were the results of the adoption of more efficient irrigation systems by many participating sites, and also due to the fact that most newly included sites in the study were drip irrigated, especially in season 2010/11.

Figure 2: Box plot of yield between 2003 and 2011

Figure 3: Box plot of water applied between 2003 and 2011

Table 2: Number of sites	average seasonal amount	t of water applied and y	vield - Irrigation	system type con	nnarison
Table \angle . Number of sites,	average seasonal amount	i ul walel applieu allu	yielu - iniyalion ;	зузіетт туре соп	ipanson

	Season	Drip	Furrow	Low level	Overhead
<u></u>	2002/03	9		29	1
	2003/04	9		29	1
Number	2004/05	10		29	
of sites	2005/06	14	7	30	
	2006/07	12		31	2
	2007/08	23		26	
	2008/09	38		23	
	2009/10	53		11	
	2010/11	57		8	
	Total	225	7	216	4
	2002/03	6.5		7.6	5.9
Average	2003/04	6.8		8.4	7.6
water	2004/05	7.2		10.0	
applied	2005/06	7.5	8.0	10.8	
(ML/ha)	2006/07	7.0		9.5	3.9
	2007/08	5.2		6.6	
	2008/09	7.0		9.3	
	2009/10	6.5		8.7	
	2010/11	3.8		4.2	
	Average	5.9	8.0	8.7	5.3
-	2002/03	27.2		23.1	5.0
Average	2003/04	26.0		27.4	16.2
yield	2004/05	19.7		22.3	
(t/ha)	2005/06	13.2	19.7	19.7	
	2006/07	10.9		20.1	13.4
	2007/08	17.3		19.1	
	2008/09	27.5		23.9	
	2009/10	13.5		14.0	
	2010/11	5.7		5.4	
	Average	15.3	19.7	21.2	12.0

The seasonal averages of water applied by drip irrigated sites were consistently lower than those of low level irrigated sites over the nine seasons, i.e. 2.8 ML/ha lower on average. In the last season, the high rainfall amount resulted in low average water usage at both drip and low level irrigated sites, i.e. 3.8 ML/ha and 4.2 ML/ha respectively. These values represent only 64% and 48% respectively of their nine-year average.

The average yield for drip (5.7 t/ha) and low level (5.4 t/ha) irrigation systems in 2010/11 were the lowest results so far, i.e. only 37% and 25% respectively of their corresponding nine-year average. The rainy conditions in 2010/11 were conducive to diseases and crop damage, resulting in inferior grape quality and marketable yield for both drip and low level irrigated sites.

The resulting average yield for drip irrigation in 2011(5.7 t/ha) was just over 40% of the previous year's average (13.5 t/ha) and only 37% of the overall average. In the case of low level irrigated sites, the average yield was 5.4t/ha in 2011, 39% of the previous year and only 25% of the overall average. The overall lower nine-year average of drip irrigation was mostly due to its poor results in 2005/06 and 2006/07, when the average yields were respectively 6.4 t/ha and 9.2 t/ha less than the yields of low level irrigation. The box plots in Figure 4 show the variation of yield at the different sites and irrigation systems in 2009, 2010 and 2011.

As can be seen in Figure 4 the medians in 2009, 2010 and 2011. As can be seen in Figure 4 the medians in 2011 for low level (1.55 t/ha) and drip irrigated sites (1.98t/ha) were the lowest recorded in the nine years of the study. The previous lowest and highest medians recorded for low level irrigated sites were 14.88t/ha in 2010 and 25 t/ha in 2004. The corresponding figures for drip irrigated sites were 9.31t/ha in 2007 and 35.5t/ha in 2003. The yield range for low level irrigated sites in 2011 (0 to 19.91 t/ha) was lower than for the drip irrigated sites (0 to 27.18 t/ha). The low yields reported were mainly due to high disease pressure brought on by the extreme rainfall events experienced in December 2010 and January and February 2011.

Figures 6a and 6b and Tables 3a and 3b present the performance of each site, in terms of yield and ranking, for the years 2011, 2010 and 2009. To improve the quality of the graphs and tables for the number of sites involved, the results were grouped by irrigation system type and split into two pages. The sites were further regrouped by variety and ranked according to the highest overall yield in each year.

The water applied at different sites is presented in Figures 7a and 7b and Tables 4a and 4b. The sites were grouped and listed in the same order as the yields presented in Figures 6a and 6b and Tables 3a and 3b to facilitate comparison of yield and water applied. However, the ranks in Tables 4a and 4b were based on the lowest water applied (ML/ha) in each year.

Drip irrigation used less water than low level irrigation, as shown by the number in the top ranked sites in the last three years.

Figure 5 shows that the median values for water applied for drip (4.01 Ml/ha) and low level (4.27 Ml/ha) irrigated sites were very similar in the 2011 season. In 2011 75% of the low level sites used 4.57 Ml/ha or less while 4.61 Ml/ha was the median for the drip irrigated sites. The medians for the previous two years for low level irrigated sites were 9.21 Ml/ha in 2010 and 8.31 Ml/ha in 2009 and 6.59 Ml/ha and 7.39 Ml/ha for drip irrigated sites in the same years.

The presented results show how the yields at the majority of sites have been affected in 2011. Three of the low level irrigated sites and 11 of the drip irrigated sites reported zero yields in 2011. Eleven of the drip irrigated sites reported increased yields in 2011 compared to 2010, while 25 sites reported decreases. There seems to be no correlation between early and late harvested varieties and yield decreases. There were eight drip irrigated sites in the top ten performing properties in 2011 and only two low level irrigated sites. There seems to be no correlation between variety and rating in the top ten, although both low level sites were Flame Seedless. The range for drip irrigated sites was 0 to 27.2 t/ha and 0 to 19.9 t/ha for low level irrigated sites.

All ten of the top ten ranked sites for water applied were drip irrigated (in fact 16 drip irrigated sites outperformed their low level counterparts).

It is interesting to note that the yield at site 110BC improved from 5.0 t/ha (2009) to 9.2 t/ha (2010) while the water applied changed from 15.6 ML/ha with low level in 2009 to 8.3 ML/ha with drip in 2010. As already pointed out, the absence of an obvious relationship between water applied and yield suggests the influence of confounding factors, e.g. climatic conditions, crop management or water distribution throughout the season.

Figure 4: Box plot of yield per irrigation system type for 2009, 2010 and 2011

Figure 5: Box plot of water applied per irrigation system type for 2009, 2010 and 2011

Figure 6a: Yield at sites using drip irrigation grouped by variety and ranked with respect to yield

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, Fa: Fantasy. Fl: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

Yield

Rank*

Continued on next page

 * Based on all sites, i.e. including sites with low level irrigation

Table 3b: Sites using low level irrigation ranked with respect to the highest yield

** Based on all sites, i.e. including sites with drip irrigation

23.2

5.0

12.6

2.4

Median

Minimum

2.0

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, Fa: Fantasy. Fl: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

* Based on all sites, i.e. including sites with low level irrigation

51 9.3 8.6 59 8.1 41 7.2 18 13.3 57 15.2 59 8.3 45 8.4 8.6 54 49 8.4 8.6 54 49 7.9 38 53 9.1 15.6 60 7.3 20 6.9 8.1 35 42 7.8 8.2 44 45 7.8 9.1 45 54 7.6 31 7.3 20

Water applied

8.3

8.3

7.3

15.6

7.9

8.5

Rank*'

62

61

58

46

47

20

60

38

48

2009 2011 2010 2009

18

43

34

34

60

43

18

60

62

59

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, Fa: Fantasy. Fl: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

3.7 ** Based on all sites, i.e. including sites with drip irrigation

6.7

4.0

1.3

Median

Minimum

15.6

7.6

2.5

64

64

60

3.1.4 Yield and water applied per irrigation scheduling method

The method used to schedule irrigation can play an important part in how effectively and efficiently water is applied. Some of the methods used in the present study were tensiometer, capacitance probe, experience and dig or dig-stick.

Table 5 shows that for the first time since 2005 there were more participants using capacitance probes (27) than reported experience (18) as their scheduling method. There was virtually no difference in the average water applied for each of the scheduling methods reported in 2011, with irrigators using capacitance probes averaging 4 MI/ha, dig stick 3.8 MI/ha, experience 3.8 MI/ha and tensiometer 3.6 MI/ha. These ranged from 2.2 MI/ha (experience) 0 to 4.7 MI/ha (dig stick) lower than the previous year and 2.5 MI/ha (capacitance probes) to 5.2 Ml/ha (dig stick) than the long term averages.

In 2011sites using dig sticks had a much higher average yield (16.6 t/ha) than those using capacitance probes (5.8 t/ha), experience (2.8 t/ha) or tensiometers (1.1 t/ha).Except for those sites using dig sticks, the averages were very much lower in 2011 than the overall averages (10.6 t/ha for capacitance probes, 16.1 t/ha for experience and 18.3 t/ha for tensiometer scheduled sites).

Table 5: Number of sites, average seasonal amount of water applied and yield - Irrigation scheduling method comparison

	Season	Capacitance	Dig	Experience	Tensiometer
	2002/03	10		19	10
	2003/04	10		18	11
Number	2004/05	14	5	10	10
of sites	2005/06	13	5	22	11
	2006/07	7	4	22	11
	2007/08	11	3	17	17
	2008/09	16	3	22	19
	2009/10	12	3	28	20
	2010/11	27	9	18	11
,	Total	120	32	176	120
	2002/03	6.6		78	70
Average	2003/04	6.6		8.8	8.0
water	2004/05	8.4	10.3	10.1	9.3
applied	2005/06	8.4	9.8	9.8	10.2
(MI /ha)	2006/07	6.3	13.8	9.0	7.6
(me/na)	2007/08	5.2	9.0	6.2	5.7
	2008/09	7.7	15.5	6.9	8.0
	2009/10	7.1	8.5	6.0	7.8
	2010/11	4.0	3.8	3.8	3.6
	Average	6.5	9.0	7.5	7.4
	2002/03	23.6		23.0	24.7
Average	2003/04	22.8		29.2	26.6
yield	2004/05	18.6	19.4	25.2	23.5
(t/ha)	2005/06	19.6	16.3	18.2	15.9
	2006/07	13.2	22.4	18.6	16.9
	2007/08	21.7	19.0	15.4	19.3
	2008/09	21.1	9.1	28.0	30.4
	2009/10	14.9	8.8	12.8	13.6
	2010/11	5.8	16.6	2.8	1.1
	Average	16.4	16.3	18.9	19.4

Figure 8: Box plot of yield per irrigation scheduling method for 2009, 2010 and 2011

Figure 9: Box plot of water applied per irrigation scheduling method for 2009, 2010 and 2011

Figure 8 shows that in stark contrast to the previous two years, sites using dig sticks had the highest median yield recorded in 2011 (19.43t/ha) and were much higher than the previous two years. All other scheduling methods showed a marked decline in median yields reported. Four of the tensiometer scheduled sites recorded no yield in 2011, with the highest yield recorded being 3t/ha which is approximately one tenth of the maximum yields of previous years. The median yield for irrigations scheduled using experience alone was 1.09t/ha which is an 11.32 t/ha reduction on the next lowest result (recorded in 2010) and 24.39t/ha lower than the highest ever value recorded (2009). 75% of the experience

scheduled sites recorded 3t/ha or lower figures in 2011, with the range from 0 to 13.33 t/ha. The median yield in 2011 for capacitance probe scheduled sites was 4.26t/ha. This was the lowest ever recorded figure with 11.7t/ha (2010) being the next lowest and 23.75 t/ha (2003) being the highest. In 2011 75% of the sites recorded a yield of 8.08t/ha or less. The maximum yield in 2011 was 25.13 which was the second lowest recorded.

3.2 Irrigation application efficiency

Application efficiency was calculated (see Equation 6 in Appendix B) for each site using the grower's irrigation records and weather data collected for the region where each property is located. In PIRSA's benchmarking module, the drainage calculation is based on the irrigation water applied in excess of the combined soil moisture deficit and predicted daily crop water use. Daily crop water use is based on site specific weather data and a standard set of crop coefficients. These figures do not cater for differences between varieties, canopy size, row and vine spacing. The crop coefficients may change as a result of a combination of those variables, and therefore may contribute to differences in the predicted drainage and hence application efficiency calculations.

The results for application efficiency should not be interpreted as being definitive due to the large number of variables that influence its calculation. However, application efficiency remains a valuable indicator of over or under irrigation, particularly at sites where crop coefficients are close to matching the generic standards, and is therefore a useful guide when comparing sites and properties for the purpose of irrigation benchmarking.

An application efficiency of 85-90%, as represented by the horizontal strip in Figure 10, would result in a leaching fraction of 10 - 15% of the total irrigation water applied and is considered optimal to prevent a build-up of salts in the root zone. Conversely, application efficiencies below 85% indicate an excessive amount of irrigation water is passing through the root zone. If the application efficiency is greater than 90%, under-irrigation may be occurring and harmful salts may not be leached from the root zone.

From Figure 10 it can be seen that despite the drop in volume of water applied in 2011 (see above), the application efficiency decreased from a median of 89% in 2010 to 83% in 2011. This means that despite more water being applied in 2010 there was more predicted through drainage in 2011. In 2011 75% of the sites had application efficiencies above 75%. For only the second year (with 2006 being the other

year) there were sites that recorded 100% application efficiency with 25% of the sites rating 92% or above.

Just over half the application efficiencies in 2011 were below the target range of 85-90% while approximately one in seven sites fell within the target range. 2011 had the third highest number of properties scoring over 90% since the start of the project in 2002. The majority of irrigators draw their water from the Murray which has had extremely good water quality, so the potential build up of salt in the rootzone through lack of leaching will be minimised, the irrigators of these sites should be monitoring soil health to ensure a damaging salt concentration is not reached.

Figure 10: Box plot of irrigation application efficiency between 2003 and 2011

Table 6 shows the percentage of sites that achieved application efficiencies within the recommended 85-90% range and on either side of the 85-90% range over the last nine seasons.

3.2.1 Application efficiency per irrigation system type

Table 7 shows the average application efficiencies for the different irrigation system types. For the third consecutive year drip irrigated sites achieved an average within the recommended 85-90% range. The seasonal averages for drip irrigation were more consistent over the nine years and were also higher than those for low level irrigation each year

In 2011, the application efficiency for low level irrigation was 21% less than the average for drip irrigation, and 1% below its own nine-year average of 86%. The nine-year averages show that drip irrigated sites had an application efficiency average of 86% while the low level irrigated sites only averaged 74%.

The application efficiency per irrigation system type (Figure 11) shows the medians of sites with drip irrigation were higher than the medians of sites with low level irrigation. The box plots also indicate there were many drip irrigated sites that met the target. The highest low level application efficiency value was 71% with half of the properties rating 63.5% or above and 25% rating below 61.5%. Application efficiencies for drip irrigated sites were 81% or better in 75% of the sites.

The box plots show that the range of application efficiencies in 2011 was greater for both low level and drip irrigated sites than in 2010.

Figures 12a and 12b and Tables 8a and 8b compare the last three years' application efficiencies of sites, grouped by irrigation system type and variety. Tables 8a and 8b also present the rank of each site with respect to the highest application efficiency values.

Saacon	Percentage of sites with application efficiency						
Season	within 85-90%	under 85-90%	over 85-90%				
2002/03	15.4	56.4	28.2				
2003/04		48.7	51.3				
2004/05	10.3	82.1	7.7				
2005/06	3.9	90.2	5.9				
2006/07	17.8	75.6	6.7				
2007/08	18.4	55.1	26.5				
2008/09	9.8	54.1	36.1				
2009/10	15.6	42.2	42.2				
2010/11	13.8	52.3	33.8				

Table 6: Percentage of sites within, over and under the recommended 85-90% range of application efficiency

Saacon	Average application efficiency (%)						
Season	Drip	Furrow	Low level	Overhead	Average		
2002/03	86		82	86	83		
2003/04	88		82	82	83		
2004/05	83		71		74		
2005/06	84	74	65		72		
2006/07	79		68	91	72		
2007/08	86		81		83		
2008/09	85		75		81		
2009/10	87		71		85		
2010/11	85		64		83		
Average	86	74	74	87	80		

Table 7: Average application efficiency - Irrigation system type comparison

The application efficiency per irrigation system type (Figure 11) shows the medians of sites with drip irrigation were higher than the medians of sites with low level irrigation.

Figures 12a and 12b and Tables 8a and 8b compare the last three years' application efficiencies of sites, grouped by irrigation system type and variety. Tables 8a and 8b also present the rank of each site with respect to the highest overall application efficiency in each year.

The ranking in Tables 8a and 8b indicate that, irrespective of variety, the sites with the best application efficiencies in 2011 were all using drip irrigation systems. Drip irrigated sites occupied almost all the top rankings in the previous two years, i.e. nine and ten sites in the top ten highest application efficiencies in 2010 and 2009 respectively.

All low level irrigated sites had application efficiencies below the recommended 85-90% range in 2011. The results of most of these sites in 2011 were also lower compared to 2010. This is compounded by a drop in median figures from 2009 to 2010.

Figure 11: Box plot of irrigation application efficiency per irrigation system type for 2009, 2010 and 2011

Table 8a: Sites using drip irrigation ranked with respect to the highest application efficiency

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, * Based on all sites, i.e. including sites with low level irrigation Fa: Fantasy. FI: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, Fa: Fantasy. Fl: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

** Based on all sites, i.e. including sites with drip irrigation

46.2

51.9

Minimum

54.7

3.2.2 Application efficiency per irrigation scheduling method

The box plots in Figure 13 show the application efficiencies achieved with different irrigation scheduling methods during the last three seasons. Except at sites with capacitance probes, the other sites had generally higher application efficiencies in 2011 than in 2010. In 2011, tensiometer sites where irrigation scheduling was based on dig experience had application efficiencies closer to the recommended range.

The medians for the different scheduling methods in 2011 were 71% (capacitance), 79% (dig), 92% (experience) and 83% (tensiometer). As pointed out previously, the results for the dig method come from a small sample (i.e. six sites) and hence could also be dependent on other factors common to those sites.

Table 9 presents the average application efficiencies obtained with the different scheduling methods over the last nine seasons. In 2011 sites that had their irrigations scheduled using capacitance probes dropped to their lowest ever average application efficiency (74%), well below the overall average of 79%. In most past seasons sites using capacitance probes have generally outperformed their counterparts using other scheduling methods. In 2011 the other three scheduling methods all outscored their ongoing averages (dig stick + 19%, experience + 9% and tensiometer +6%).

Table 9: Average application efficiency - Irrigation scheduling method comparison

Season	Average application efficiency (%)							
5645011	Capacitance	Dig	Experience	Tensiometer				
2002/03	84		78	91				
2003/04	86		79	88				
2004/05	78	68	69	76				
2005/06	78	65	71	69				
2006/07	81	52	71	76				
2007/08	80	83	87	82				
2008/09	78	47	84	87				
2009/10	85	78	89	79				
2010/11	74	91	89	88				
Average	79	72	80	82				

3.3 Crop production per ML of water applied

The crop production per megalitre (see Equation 1 -Appendix B) in Figure 14 shows a similar trend as the box plots of yields in Figure 2. This indicates that the crop production per megalitre was determined to a great extent by the yield results over the years. The influence of the amount of water applied can also be seen when comparing year 2010 to years 2005, 2006 and 2007 in Figures 2, 3 and 14. Although the yield in 2011 was much lower than in the years mentioned, the higher water applied between years 2005 and 2007 resulted in similar crop production per megalitre. The median value for 2011 (0.48t/MI) was the lowest on record. 75% of the sites had crop production per Megalitre values of 1.94t/MI or lower with 25% recorded 0.05% K t/MI or lower. For the other years the results were 5.1 t/ML (2009), 3.9 t/ML (2008), 2.9 t/ML (2007), 2.8 t/ML (2006), 3.3 t/ML (2005), 5.0 t/ML (2004) and 4.8 t/ML (2003).

3.3.1 Crop production per Megalitre of water applied - Irrigation system type comparison

Figure 15 shows the crop production per Megalitre results for both drip (0.55 t/MI) and low level (0.39t/MI) irrigated sites were the lowest on record. Despite the drop in water applied for each of the irrigation systems (see Figure 5) the reduced yields (see Figure 4) had a greater influence on these results. The results from previous years ranged from 1.4 t/MI (2007) to 4.85 t/MI (2003) for drip irrigated sites and 1.8 t/MI (2006) to 3.47 t/MI (2004) for low level irrigated sites in 2011 was greater (0 to 6.9 t/MI) than for the low level irrigated sites (0 to 4.58 t/MI).

The results for 2011 (Table 10) shows that both drip (1.4 t/MI) and low level (1.3t/MI) irrigated sites average crop production per megalitre were the lowest on record. Both were well under their long term average with drip 1.1 t/MI

Figure 14: Box plot of crop production per Megalitre of water applied between 2003 and 2011

Figure 15: Box plot of crop production per Megalitre of water applied per irrigation system type for 2009, 2010 and 2011

Table 10: Average crop production per megalitre of water applied - Irrigation system type comparison

Season	Αν	Average crop production per megalitre (t/ML)							
	Drip	Furrow	Low level	Overhead	Average				
2002/03	4.1		3.3	0.8	3.4				
2003/04	3.8		3.7	2.1	3.7				
2004/05	2.8		2.3		2.4				
2005/06	1.8	2.5	2.0		2.0				
2006/07	1.5		2.3	3.5	2.1				
2007/08	3.3		3.1		3.2				
2008/09	4.2		2.8		3.7				
2009/10	2.1		1.7		2.1				
2010/11	1.4		1.3		1.4				
Average	2.5	2.5	2.7	2.5	2.6				

lower and lowlevel sites 1.4 t/MI lower.

Table 11a: Sites using drip irrigation ranked with respect to the highest crop production per megalitre of water applied

Rank'

2010 2009

Continued on next page

* Based on all sites, i.e. including sites with low level irrigation

Rank*

AR: Autumn Royal, Cal: Calmeria, Cr: Crimson Seedless, Cu: Currant, Fa: Fantasy. Fl: Flame Seedless, Mi: Midnight Beauty, Me: Menindee Seedless, Oh: Ohanez, RG: Red Globe, Th: Thompson Seedless

** Based on all sites, i.e. including sites with drip irrigation

1.6

0.3

3.5

0.3

Median

Minimum

0.5

Figures 16a and 16b and Tables 11a and 11b show the performances of different sites grouped by irrigation system and variety and ordered according to the crop production per megalitre of water applied. In 2011, eight out of the top 10 ranked sites were irrigated by drip. In 2011, the top ranks were more or less evenly distributed among several varieties, e.g. Crimson Seedless, Flame Seedless, Thompson Seedless and Red Globe.

As already observed in the previous years, there were big variations between sites within the same irrigation system and variety group, e.g. from 6.9 t/ML to 0.0 t/ML for drip irrigated sites growing Red Globe. This tends to indicate that any cause and effect relationship cannot be generalised due to site specific conditions, specially in regard to how the different crops were affected by the heat waves of November 2010 and extreme rainfall events in January and February 2011. This can be seen from the results of sites growing the same variety, with similar water usage and applications

efficiencies but different yields, hence different crop production per megalitre.

Table 12 shows the average crop production was lower in 2010/11 compared to 2009/10 and 2008/09, irrespective of variety and irrigation system. Only varieties Calmeria under drip irrigation and Flame Seedless under low level irrigation had an average crop production close to their respective nine-year average. The highest crop production per megalitre in 2011 were obtained with Flame Seedless (1.8 t/ML) and Calmeria (3.1 t/ML) under drip irrigation and with Flame Seedless (4 t/ML) under low level irrigation.

System	Variaty	Average crop production per megalitre (t/ML)									
type	variety	2002/03	2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	Average
Drip	Autumn Royal							3.4	1.6	0.5	1.6
	Calmeria	5.2	5.0	2.9	0.6	1.8	4.1	4.4	3.4	3.1	3.4
	Crimson			0.7	1.5	1.3	3.1	3.1	2.0	1.2	2.0
	Currant							2.3		0.0	1.2
	Fantasy									0.1	0.1
	Flame	5.0	3.9				3.8	7.5	4.3	1.8	4.0
	Menindee	2.6	3.0	2.4	1.6	2.0	3.1	3.6	1.7	1.5	2.2
	Midnight Beauty	Y								1.3	1.3
	Red Globe	5.1	4.0	3.3	2.2	1.6	3.6	4.5	1.7	1.7	2.7
	Thompson	3.2	3.7	3.4	2.7	1.1	1.8	4.7	2.4	1.4	2.6
Low level	Calmeria	3.3	4.3								3.8
	Cardinal	1.7	1.8	1.5	1.8						1.7
	Crimson	5.1	6.5	2.4	1.5	1.6	2.9	2.7	1.7	0.0	2.3
	Flame	3.5	2.4	2.3	2.3	2.6	4.9	4.1		4.0	3.0
	Menindee	2.8	3.5	1.8	1.5	2.8	2.3	2.0	1.1	0.4	2.2
	Ohanez						3.0	1.7			2.3
	Red Emperor	3.7	3.5	2.8	2.5	2.3					2.9
	Red Globe	3.5	4.3	3.0	2.3	2.4	5.7	3.6	1.2		3.4
	Thompson	3.5	3.6	1.9	2.3	2.2	2.0	3.1	2.5		2.6
Overhead	Crimson	0.8	2.1			3.6					2.2
	Menindee					3.3					3.3
Furrow	Calmeria				3.7						3.7
	Crimson				1.5						1.5
	Flame				1.6						1.6
	Menindee				1.6						1.6
	Rally				1.2						1.2
	Red Globe				3.3						3.3
	Thompson				4.5						4.5

Table 12: Average crop production per megalitre of water applied - Variety and irrigation system type comparison

3.4 Gross return per ML of water applied

Gross return per megalitre of water applied is the ratio between the price per hectare (\$/ha) received by the growers for the sale of their produce and the volume of irrigation water applied (ML/ha) over the season (see Equation 2 -Appendix B). A number of factors contribute to the differences in gross return between sites and between seasons. Such factors include age of the vines, maintenance and management of irrigation systems, volume of water applied, crop damage, and the market value of the crop. Gross return per megalitre of water applied does not consider input costs and therefore does not give an indication of growers' profits.

Figure 17 shows the median value for gross return per megalitre for 2011 ((\$1107/MI) was lowest on record, with the previous lowest being \$3067/MI in 2005 compared to the highest of \$6753/MI in 2009. The range of values in 2011 was very large being \$0/MI to \$21653/MI which is the second highest value on record. For only the second time since the start of the project low level irrigated sites (\$3976/MI) showed a higher gross return per megalitre than their drip irrigated counterparts (\$3078/MI). Both the low level (-\$560/MI) and drip (-\$1935/MI) had lower averages in 2011 than their long term averages. Drip irrigated sites have a higher long term average than the low level sites.

3.4.1 Gross return per Megalitre of water applied - irrigation system type comparison

Drip irrigated sites had an average gross return per megalitre

of \$816/ML higher than low level irrigated sites in 2010 (Table 13). In fact, the seasonal results for drip irrigation were higher than those of low level irrigation seven years out of eight. The results for drip and low level irrigated sites in the last season were \$4412/ML and \$1863/ML respectively below their results in 2008/09 and \$1191/ML and \$862/ML respectively below their eight-year averages.

Figure 17: Box plot of gross return per Megalitre of water applied between 2003 and 2011

Saacon	Α	verage gross	return per mo	egalitre (\$/ML	.)
Season	Drip	Furrow	Low level	Overhead	Average
2002/03	6908		5298	1180	5564
2003/04	5540		5340	3002	5326
2004/05	3706		3167		3305
2005/06	3589	4539	3471		3650
2006/07	2664		3812	7760	3678
2007/08	6713		6164		6402
2008/09	8924		5379		7542
2009/10	4512		3696		4365
2010/11	3078		3976		3188
Average	5013	4539	4536	4926	4773

Table 13: Average gross return per megalitre of water applied (\$/ML) - Irrigation system type comparison

Table 14: Average gross return per megalitre of water applied (\$/ML) - Variety comparison

Variety		Averag	e gross r	eturn per	megalitre	e (\$/ML)				
variety	2002/03	2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10	2010/11	Average
Autumn Royal							9633	4732	1244	4659
Calmeria	7119	6406	3690	2504	2362	5875	6963	4429	5941	5215
Cardinal	2697	2925	1173	2211						2252
Crimson	4632	6711	2602	2980	3668	8232	6960	5190	2453	4816
Currant							2107		5	1056
Fantasy									103	103
Flame	6756	5199	3625	3658	5128	10610	16940	9053	8585	7482
Menindee	4558	5167	2793	2848	4828	5444	6072	3765	2390	4180
Midnight Beauty									2892	2892
Ohanez						5907	3373			4640
Rally				2576						2576
Red Emperor	5847	5546	4036	2959	2608					4199
Red Globe	6223	5678	4031	4462	3202	8346	8320	2936	3331	5134
Thompson	5280	4700	3112	4447	2960	3310	6838	4724	2772	4264
Average	5564	5326	3305	3650	3678	6402	7542	4365	3188	4773

3.4.2 Gross return per Megalitre of water applied - variety comparison

The seasonal average gross return achieved by each variety is presented in Table 14. The results are calculated from the market value of a particular variety and the volume of water applied per hectare. If the price for the sale of fruit has not changed substantially then the difference in gross return per megalitre between seasons depends largely on the irrigation applied and the yield.

With an average return of \$8585/MI Flame out performed all of the other varieties in this study in 2011. Flame has consistently had the greatest returns since 2001. Autumn Royal (-\$3415/MI), Crimson (-\$2363/MI), Menindee (-\$1790), Red Globe (-1803) and Thompson (-1492) were all well below their long term averages.

However all varieties had lower results in 2010/11 compared to 2009/10 except for Calmeria and Red Globe. It should again be noted some of these best results should be interpreted with caution as they were obtained from a small sample of sites.

3.5 Cost of water per tonne of fruit

Cost of water per tonne of fruit is calculated using Equation 3 (Appendix B) and is influenced by many factors within irrigation systems and seasons. Inputs comprise the cost of irrigation water, the cost of on/off-peak electricity for pumping, the total number of irrigation hours and the yield produced. It should not be interpreted as being definitive due to the number of variables involved in the calculation.

In 2010, 50% of the sites had a cost of water per tonne of fruit between \$63/t and \$206/t. As a comparison, the results for 50% of the sites were between \$43/t and \$120/t in 2009 and between \$56/t and \$223/t in 2008. The majority of values in the last eight seasons were below \$100/t but a few sites had extremely high values, e.g. above \$300/t. The outliers in most cases were due to a combination of an extremely low yield combined with a high cost of water.

3.5.1 Cost of water per tonne of fruit - irrigation system type comparison

Table 15 shows the result for drip irrigation in 2010 (\$267/t) was the highest average cost of water per tonne of fruit over the nine seasons. This result was also more than twice the seasonal average (\$118/t) and five times the 2011 average of low level irrigated sites (\$53/t). The main reason is the reduced yields experienced by many irrigators due to the extreme rainfall events experienced in 20011. There were more drip irrigated sites participating in 2011 that were impacted by the rainfall reflecting the greater impact on the average of the drip sites.

Figure 18: Box plot of cost of water per tonne of fruit between 2003 and 2011

Figure 18 shows that in 2011 the median value of the cost of water per tonne of fruit was the third highest in the nine years of the project at \$107/t in 2011 behind \$131/t in 2008 and \$110/t in 2010. The main reason for this high value was not the cost of water as experienced in 2008 but the low yields due to the extreme rainfall events during the growing season. In 2011 the mid range 50% of sites had a cost of water per tonne of fruit between \$40/t and \$347/t. As a comparison, the results for 2010 were between \$63/t to \$206/t and \$43/t to \$120/t for 2009.

Season	Averag	ge cost of wat	er per tonne of fru	it (\$/t)	
0003011	Drip	Furrow	Low level	Overhead	Average
2002/03	26		39	152	39
2003/04	32		39	62	38
2004/05	46		61		57
2005/06	106	41	89		87
2006/07	122		82	24	90
2007/08	138		187		165
2008/09	99		150		119
2009/10	227		98		204
2010/11	267*		53		160*
Average	118	41	89	66	107

Table 15: Average cost of water per tonne of fruit - Irrigation system type comparison

* two sites that produced negligible volumes of fruit in 2011 (eg 15 Kg/Ha) were discounted in determining these averages

3.6 Gross return per dollar water input

This indicator compares dollar returns from the sale of fruit with the expenditure on water to produce that fruit (\$/\$). It is strongly influenced by water costs and the gross return on crop production. Water costs often differ between growers according to the supply source and its associated cost structure.

Figure 19 shows there were large variations between the different sites within each year.

Table 16 shows a different perspective from the results presented in Figure 19. The gross returns per dollar water input in 2011 showed the median value was the lowest of all years recorded at \$9.50. The results of the previous years ranged from \$13.40 in 2008 to \$52.30 in 2003. This is chiefly due to the low yields experienced in 2011. The range of values for 2011 was the second highest recorded at 0 to \$401.20. In 2011 the drip irrigated sites recorded their lowest value at \$24 which is \$19 less than the overall average. Conversely the low level irrigated sites had their highest ever average at \$98 which is \$58 greater than the overall average. The number of low level sites was only eight, three of which recorded no yield, so any comparison between the drip and low level irrigated sites may be misleading. This demonstrates how different statistics can provide different level of information. In the present case, the high results at some sites compensated for the low results at other sites and therefore influenced the averages.

Figure 19: Box plot of gross return per dollar water input between 2003 and 2011

Table 16: Average gross return per dollar water input (\$/\$) - Irrigation system type comparison

Season	Average	gross return p	er dollar water i	nput (\$/\$)
Season	Drip	Furrow	Low level	Overhead
2002/03	101		58	9
2003/04	65		55	23
2004/05	47		34	
2005/06	46	56	39	
2006/07	41		41	93
2007/08	40		16	
2008/09	52		20	
2009/10	45		28	
2010/11	24		98	
Average	43	56	40	54

Conclusions

- Irrigation Benchmarking continues to be a useful tool to assess and compare growers' performances from season to season, as well as to identify best irrigation management practices.
- Although site-specific conditions and the presence of confounding factors often make comparisons difficult, the results nevertheless provide important information about the diversity that exists within the industry and the potential returns associated with different irrigation management strategies.
- After the good yield results for season 2008/09, the heatwave conditions in November 2009 and extreme rainfall events in 2011 showed how severely the yield at many sites could be affected by unfavourable climatic conditions.
- The extreme rainfall events experienced by many table grape growers in the 2010-2011 season led to many sites in this study being water logged or prone to high disease pressure, both of which led to lower quality and yields.
- The average yield of all varieties for drip irrigated sites in 2011 (5.7 t/ha) was less than half that of 2010, and 21.8 t/ha lower compared to the average of 2009. In the case of low level irrigated sites, the average yield in 2011(5.4 t/ha) was 8.6 t/ha and 18.5 t/ha lower than the averages of 2010 and 2009 respectively.
- Season 2010/11 resulted in 13.8% of sites scoring within the target 85-90% application efficiency range with a further 33.8% scoring over 90%. This result indicates that there are still many sites that could improve their timing and amount of irrigation.
- Drip irrigated sites generally achieved application The average application efficiencies for sites with drip irrigation were more consistent over the nine years and were also higher than those for low level irrigation. In 2011, the application efficiency for low level irrigation was 21% less than the average for drip irrigation, and 1% below its own nine-year average of 86%. The nine-year averages show that drip irrigated sites had an application efficiency average of 86% while the low level irrigated sites only averaged 74%.
- The crop production per megalitre results for both drip (0.55 t/Ml) and low level (0.39t/Ml) irrigated sites were the lowest on record. Despite the drop in water applied for each of the irrigation systems (see Figure 5) the reduced yields (see Figure 4) had a greater influence on these results. The results from previous years ranged from 1.4 t/Ml (2007) to 4.85 t/Ml (2003) for drip irrigated sites and 1.8 t/Ml (2006) to 3.47 t/Ml (2004) for low level irrigated sites. In 2011 the range was greater for drip irrigated sites

(0 to 6.9 t/Ml) than for the low level irrigated sites (0 to 4.58 t/Ml).

- The results for 2011 shows that both drip (1.4 t/Ml) and low level (1.3t/Ml) irrigated sites average crop production per Megalitre were the lowest on record. Both were well under their long term average with drip 1.1 t/Ml less. The different varieties grown each had an average crop production per Megalitre of water in 2011 lower than in 2010 and all were under their longterm average except for low level irrigated Flame Seedless.
- The median value for gross return per megalitre for 2011 (\$1107/MI) was lowest on record, with the previous lowest being \$3067/MI in 2005 compared to the highest of \$6753/MI in 2009. The range of values in 2011 was very large being \$0/MI to \$21653/MI which is the second highest value on record. For only the second time since the start of the project low level irrigated sites (\$3976/MI) showed a higher gross return per megalitre than their drip irrigated counterparts (\$3078/MI). Both the low level (-\$560/MI) and drip (-\$1935/MI) had lower averages in 2011 than their long term averages. Drip irrigated sites have a higher long term average than the low level sites.
- In terms of irrigation scheduling method, sites that used capacitance probes or tensiometers achieved higher application efficiencies than sites using the dig method or experience only.
- More important than using a particular irrigation system or scheduling method alone is the effective combination of different irrigation and management practices used by growers in achieving good production quality and quantity.

Appendix

A. Further reading

- Giddings, J., Kelly, S., Chalmers, Y., & Cook, H. (2002). Winegrape irrigation benchmarking Murray-Darling and Swan Hill 1998-2002. In Dundon, C., Hamilton, R., Johnstone, R., & Partrigde, S. (Eds.), Managing Water, (pp. 15–18)., Adelaide, SA. Australian Society of Viticulture and Oenology.
- Pollock, L. (2009). Irrigation benchmarking Evaluation study. Technical report, Department of Primary Industries, Victoria.
- Primary Industries and Resources (2000). Irrigation Benchmarking Module and Manual. Primary Industries and Resources, South Australia.
- Ratna, R. D. & Pollock, L. (2010a). Almond irrigation benchmarking 2002-2009. Technical report, Department of Primary Industries, Victoria.
- Ratna, R. D. & Pollock, L. (2010b). Dried vine fruit irrigation benchmarking 2002-2009. Technical report, Department of Primary Industries, Victoria.
- Ratna, R. D. & Pollock, L. (2010c). Dried vine fruit irrigation benchmarking 2002-2010. Technical report, Department of Primary Industries, Victoria
- Ratna, R. D. & Pollock, L. (2010d). Table grape irrigation benchmarking 2002-2009. Technical report, Department of Primary Industries, Victoria.
- Skewes, M. & Meissner, T. (1997a). Irrigation benchmarks and best management practice for citrus. Technical report, Primary Industries and Resources, South Australia.
- Skewes, M. & Meissner, T. (1997b). Irrigation benchmarks and best management practice for winegrapes. Technical report, Primary Industries and Resources, South Australia.
- Skewes, M. & Meissner, T. (1998). Irrigation benchmarks and best management practice for potatoes. Technical report, Primary Industries and Resources, South Australia.
- Sommer, K. J. & Pollock, L. (2007a). Almond irrigation benchmarking 2002-2007. Technical report, Department of Primary Industries, Victoria.
- Sommer, K. J. & Pollock, L. (2007b). Dried vine fruit irrigation benchmarking 2002-2007. Technical report, Department of Primary Industries, Victoria.

- Sommer, K. J. & Pollock, L. (2007c). Table grape irrigation benchmarking 2002-2007. Technical report, Department of Primary Industries, Victoria.
- Sommer, K. J. & Pollock, L. (2008a). Almond irrigation benchmarking 2002-2008. Technical report, Department of Primary Industries, Victoria.
- Sommer, K. J. & Pollock, L. (2008b). Dried vine fruit irrigation benchmarking 2002-2008. Technical report, Department of Primary Industries, Victoria.
- Sommer, K. J. & Pollock, L. (2008c). Table grape irrigation benchmarking 2002-2008. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. & Burrows, D. (2006a). Almond irrigation benchmarking 2002-2006. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. & Burrows, D. (2006b). Dried vine fruit irrigation benchmarking 2002-2006. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. (2006c). Open hydroponics irrigation benchmarking 2002-2005. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. (2006d). Open hydroponics irrigation benchmarking 2002-2006. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. & Burrows, D. (2006e). Potato centre pivot irrigation benchmarking 2002-2005. Technical report, Department of Primary Industries, Victoria.
- Toll, Z. & Burrows, D. (2006f). Table grape irrigation benchmarking 2002-2006. Technical report, Department of Primary Industries, Victoria.
- Vargas, J. (2005a). Almond irrigation benchmarking 2002-2005. Technical report, Department of Primary Industries, Victoria.
- Vargas, J. (2005b). Dried fruit irrigation benchmarking 2002-2005. Technical report, Department of Primary Industries, Victoria.
- Vargas, J. (2005c). Table grape irrigation benchmarking 2002-2005. Technical report, Department of Primary Industries, Victoria

B. Performance indicator formulas

1. Crop production per ML $(t/ML) = \frac{\text{Yield } (t/ha)}{\text{Water applied } (ML/ha)}$

2. **Gross return per ML (\$/ML)** = $\frac{\text{Yield (t/ha)} \times \text{Assigned value ($/t)}}{\text{Water applied (ML/ha)}}$

- 3. Cost of water per tonne of fruit (\$/t) = $\frac{\text{Cost of water applied per ha ($/ha)}}{\text{Yield (t/ha)}}$
- 4. Cost of water applied per ha (\$/ha) = (Cost of water (\$/ML) + pumping cost (\$/ML)) × water applied (ML/ha)
- 5. Gross return per dollar water input = $\frac{\text{Yield (t/ha)} \times \text{Assigned value ($/t)}}{\text{Cost of water applied per ha ($/ha)}}$

6. Application efficiency (%) = $\frac{(\text{Water applied (ML/ha)} - \text{drainage (ML/ha)}) \times 100}{\text{Water applied (ML/ha)}}$

7. Yield per volume of drainage (t/ML) = $\frac{\text{Yield (t/ha)}}{\text{Estimated drainage (ML/ha)}}$

8. Cost of drainage per tonne (\$/t) = $\frac{\text{Cost of drainage per ha ($/ha)}}{\text{Yield (t/ha)}}$

9. Cost of drainage per ha (\$/ha) = (Cost of water (\$/ML) + pumping cost (\$/ML)) × estimated drainage (ML/ha)

C. Performance indicator tables

Sito	Age	Scheduling	System	Variaty			A	ssign	ed val	ue (\$/t)		
Sile	2011	Method	Туре	variety	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS	6	Capacitance	Low level	level Crimson Seedless							3000		
101MD	18	Capacitance	Low level	Menindee Seedless	1000	1000	1400	2000	2100	2100	1800		
101RG	60	Capacitance	Low level	Red Globe	1000	1000	1400	1700	1400	1750	1800		
101TS	60	Capacitance	Low level	Thompson Seedless	1000	200	1200	1600	1800	1800	1600		
102CR	8	Capacitance	Drip	Crimson Seedless						3400	3200	3000	
102FL	1	Capacitance	Drip	Flame Seedless						0400	0500		0
102112	34	Capacitance	LOW IEVEI	Menindee Seedless						3400	3500	2500	2500
102112	00 00	Capacitance	Drip	Monindoo Soodlooo						2400	2500	3000	3500
102106	23 5	Capacitance	Drip	Midnight Populy						3400	3500	3250	3000
1021VII 103CM	12	Tensiometer	Drip	Calmeria	1750	1190	1289	1666					4000
103CN	5	Canacitance	Drip	Crimson Seedless	1750	1150	1266	1546					
103FS	9	Tensiometer	Drip	Flame Seedless	2000	2190	1200	1040					
103MD	13	Tensiometer	Drip	Menindee Seedless	2060	1690	1427	2190					
103RG	13	Other	Drip	Red Globe	1820	1000	1263	2341					
103TS	13	Tensiometer	Drip	Thompson Seedless	1600	1390	1543	1810					
104FS	32	Tensiometer	Low level	Flame Seedless						2200	2400		
104FS	34	Tensiometer	Drip	Flame Seedless								2200	2200
104H5	5	Tensiometer	Low level	Thompson Seedless						1900	2200		
104H5	7	Tensiometer	Drip	Thompson Seedless								2400	3000
104MS	5	Tensiometer	Low level	Menindee Seedless						1700	2000	0000	0000
104105	15	Tensiometer	Drip	Ivienindee Seedless							1000	3000	2200
104RG	15	Tensiometer	Low level	Red Globe							1300	1000	1200
104hG	1/ 10	Othor			1600	1600	1500	1700	1600			1000	1300
105MD	10	Other		Menindee Seedless	1600	1600	1500	1500	1200				
105RG	9	Other		Red Globe	1600	1600	1500	1600	1800				
105TS	44	Other	Low level	Thompson Seedless	1600	1600	1500	1600	1600				
106CM	11	Other	Low level	Calmeria	1600	1600							
106CR	11	Other	Low level	Crimson Seedless	1600	1600							
106MD	11	Other	Low level	Menindee Seedless	1600	1600							
106RG	11	Other	Low level	Red Globe	1600	1600							
106TS	52	Other	Low level	Thompson Seedless	1600	1600							
107CR	10	Other	Low level	Crimson Seedless			1400	1550	1400				
107FL	11	Other	Low level	Flame Seedless	1600	1600	1500	1500	1600				
107MD	14	Other	Low level	Menindee Seedless	1600	1600	1400	1500	1600				
107RE	17	Other	Low level	Red Emperor	1600	1600	1450	1200	1150				
107KG	15	Other	Low level	Red Globe	1600	1600	1200	1550	13/5				
10210	50	Dia		Menindee Seedless	1600	1600	1/00	1350	1450				
109CB	2	Other	Drin	Crimson Seedless	1000	1000	1400	1400					2000
109FA	3	Other	Drip	Fantasy									2000
109RG	13	Other	Drip	Red Globe							2000	500	0
109ZC	27	Other	Drip	Currant							900		1225
110AR	18	Dig	Low level	Red Globe	1600	1600	1200	1789	1300	1385	1700		
110AR	20	Dig	Drip	Red Globe								1400	2216
110BC	4	Other	Overhead	Crimson Seedless	1400	1400							
110BC	9	Dig	Low level	Crimson Seedless			1200	1684	1750	4500	2050		
110BC	10	Dig	Drip	Crimson Seedless	1000			4005				2100	1865
110CM	12	Dig	Low level	Menindee Seedless	1600	1600	1000	1305	1400	1400	1400	1 400	1 4 0 0
	14	Dig	Drip	Ivienindee Seedless	1000	1000	000	1000				1400	1400
111000	15	Dig	Low level	Pod Clobo	1600	11/6	1200	1200	1250		1700	1000	0
1111TS	13	Capacitance	Drip	Thompson Seedless	560	1794	1200	1600	1200		1100	1000	0
112CB	10	Capacitance	Low level	Crimson Seedless	500	1734	1400	2777	1000		1100		U
112RG		Capacitance	Low level	Red Globe			1200	2333					
112TS		Capacitance	Low level	Thompson Seedless			1200	1667					
113MD	17	Capacitance	Drip	Menindee Seedless	2200	1600	1400	2200	2200	2700	2777	****	2000
113RG	17	Capacitance	Drip	Red Globe	2400	1400	1260	2200	2000	2500	2777	2600	2000
114MS	15	Capacitance	Low level	Thompson Seedless	2000	1600	1200	1800					
114RG	15	Capacitance	Low level	Red Globe	2400	1400	1400	2000					
115RG	6	Capacitance	Low level	Red Globe	1700	600							
115RG	/	Capacitance	Drip	Red Globe	1700	0000	1500	0007	0000				
11615	19	Tensiometer	LOW IEVEI	Hame Seedless	1/00	2000	1850	2007	2600				
		Tensiometer		Crimson Socilloss	2000	1400	1800	2000	1900				
116PC	4 10	Tensiometer		Red Cloba	1850	1200	1700	2444	1000				
11675	10 8	Tensiometer		Thompson Seedless	1800	1200	2100	2667	2200				
117RG	12	Tensiometer		Red Globe	1600	1600	1200	2000					
117TS	64	Tensiometer	Low level	Thompson Seedless	1600	1600	1400	1500					
118CA	15	Other	Furrow	Calmeria				1495					
118CR	4	Other	Furrow	Crimson Seedless				1750					
118FS	15	Other	Furrow	Flame Seedless				1660					
118MS	15	Other	Furrow	Menindee Seedless				2100					
118RG	10	Other	Furrow	Red Globe				2300					

Site 2011 Method Type Variety 7003 2004 2007 2008 2007 2008 2011 2011 11875 4 Other Furrow Thomason Seedless 1600 2000 1800 2000 2000 1800 7	0.1	Age	Scheduling	System	Marchan I.			A	ssign	ed val	ue (\$/t)		
11885 7 Other Furrow Thomas Seculass 2100 11805 45 Other Draw Draw Draw 2200 11805 45 Other Draw	Site	2011	Method		variety	2003	2004	2005	2006	2007	2008	2009	2010	2011
118TG 45 Other Furrow Thornpicon Seccless 1660 113MG 5 Other Drip Midnight Rauty is 1500 2000 113MG 15 Drip Midnight Rauty is 1500 2000 2100 113MF 14 Other Drip Mininder Seccless 1500 2000 1600 2500 2200 113MF 14 Other Low level Mininde Seccless 1200 1600 1785 113MF 14 Other Low level Mininde Seccless 2000 1800 1785 113GCR 10 Other Low level Thorson Seccless 2000 1800 1700 2100 2200 1200 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1700 1800 1800 1700 1800 1800 1800 1800 <td< th=""><th>118RS</th><th>7</th><th>Other</th><th>Furrow</th><th>Rally Seedless</th><th></th><th></th><th></th><th>2100</th><th></th><th></th><th></th><th></th><th></th></td<>	118RS	7	Other	Furrow	Rally Seedless				2100					
119CR 5 Other Dro Ortical Scales 2200 119MB 3 Other Low level Merindes Scaless 1500 2000 2000 119MF 11 Other Low level Merindes Scaless 1500 2000 2000 119MF 14 Dig Other Low level Merindes Scaless 1200 1800 2000 2200 119MF 14 Dig Other Low level Merindes Scaless 1200 1800 2000 2200 2200 119MF 14 Dig Dure level level morpson Scaless 2000 1800 1800 170	118TS	45	Other	Furrow	Thompson Seedless				1660					
119MB 3 Other Drip Midnight beauty 1500 2000 1600 2500 2000 119MF 14 Dig Dirp Meinindes Seedless 1500 2000 1600 2500 2200 2000 1600 2500 2200 1600 1765 1500 2000 1600 1765 1760 17	119CR	5	Other	Drip	Crimson Seedless									2200
119ME 16 Other Low level Menndes Seccless 1500 2000 1600 2500 2200 119MF 11 Other Low level Menndes Seccless 1500 2000 1600 2500 2200 119MG 6 Other Low level Menndes Seccless 1200 1600 1785 119MS 9 Dig Dro New level Menndes Seccless 1200 1600 1785 119MS 10 Other Low level Tompson Seccless 1200 1600 1700 2100 120TA 7 Other Low level Tompson Seccless 2000 1600 1700 2400 120TA 7 Other Low level Tompson Seccless 2111 1620 1700 2400 122CR 12 Capacitance Dro Tompson Seccless 2221 1800 1700 2400 122RS 14 Capacitance Dro Tompson Seccless 2221	119MB	3	Other	Drip	Midnight beauty									2100
119ME 21 Dig Drive Menindee Seedless 1500 2000 1600 2500 2200 119FR3 6 Other Low level Menindee Seedless 1200 1620 200 2000 1600 708 119FR3 6 Other Low level Thompson Seedless 1200 1620 200 2000 1600 708 119FR3 43 Other Low level Thompson Seedless 2000 1600 708 2100 120CR 7 Other Low level Thompson Seedless 2000 1600 700 2100 120CR 10 Dig Dru Prep Christon Seedless 2000 1600 1700 200 2100 120TC 5 Other Low level Thompson Seedless 2000 1600 1700 240 1700 240 120TC 8 Dig Low level Thompson Seedless 2187 142 1700 1800 2400 2200 250 122TR 12 Capaciance Drip Menides Seedless 2272 258 1600 250 2140 210 1700 244 250 2120 250 2120 250 2121 2121 212 <t< td=""><td>119ME</td><td>18</td><td>Other</td><td>Low level</td><td>Menindee Seedless</td><td></td><td></td><td></td><td></td><td>1500</td><td>2000</td><td></td><td></td><td></td></t<>	119ME	18	Other	Low level	Menindee Seedless					1500	2000			
1119MC 11 Other Low level Menindee Seedless 1500 2000 1600 2500 2200 119FG 43 Other Low level Program Menindee Seedless 1200 1620 2000 1600 2200 2200 119FG 43 Other Low level Program Carneon Seedless 2000 2000 1600 1785 120CR 10 Dg Other Low level Program Carneon Seedless 2000 1600 1700 7700	119ME	21	Dig	Drip	Menindee Seedless							1800	2500	2200
Hiller 14 Dag Drop Mennades Seedless 1200 120 1202 2000 1600 1765 11975 43 Other Low level Thompson Seedless 1200 1775 2000 1200	119MF	11	Other	Low level	Menindee Seedless					1500	2000			
11985 6 Other Low level Hed tacke 1200 1200 1200 1600 1785 1200R 10 Dig Other Low level Tomeson Secilless 12000 1200 12000 1200 12000 12000 1200 12000 1200 12000 <	119MF	14	Dig	Drip	Menindee Seedless					4000		1800	2500	2200
Harrs B Upp Upp Tred to See dises 1200 1800 1700 178 120CR 1 Other Low level Crimeon Seedless 2000 1800 2000 1000 700 <	119RG	6	Other	Low level	Red Globe					1200	1620	0000	1000	4705
Indust Past Char Low Feel Industor Indus	119RG	9	Dig	Drip						1000	1000	2000	1600	1785
Labora Low Even Chiban Seculass 2000 2200 2200 <th< td=""><td>11915</td><td>43</td><td>Other</td><td>Low level</td><td>Inompson Seedless</td><td>1</td><td></td><td></td><td></td><td>1200</td><td>1800</td><td></td><td></td><td></td></th<>	11915	43	Other	Low level	Inompson Seedless	1				1200	1800			
1000 0 0 <td>1200h</td> <td>10</td> <td>Dia</td> <td>Drip</td> <td>Crimson Soodloss</td> <td></td> <td></td> <td></td> <td></td> <td>2000</td> <td>2200</td> <td>1050</td> <td>2000</td> <td>2200</td>	1200h	10	Dia	Drip	Crimson Soodloss					2000	2200	1050	2000	2200
1201A 7 Other Low level Thompson Seedless 2000 1800 1700 1700 120TC 8 Olg Dip Dip Dip 1800 1700 1700 1700 120TC 8 Olg Dip Dip Dip Thompson Seedless 2000 1800 1700 2440 121TS 10 Capacitance Dip Califeria 1807 1735 1800 1700 2400 122XG 14 Capacitance Dip Califeria 1807 1820 1820 1820 1800 000 2100 1800 000 2100 1800 000 2100 1800 445 0 1730 1730 1800 445 0 1733 174 1845 1800 445 0 1740 1700 1700 1700 1700 17235 1 1800 445 0 1740 1700 1700 1700 1700 1700	1200N	5	Other	Drip	Midnight Beauty							1950	2000	2100
12017 5 Dig Drop of Low level Thompson Seedless 2000 1800 1700 1700 12017 5 Other Dig Drop of Drop of Seedless 2000 1800 1700 2040 12017 10 Other Low level Thompson Seedless 2001 1800 1700 2040 122CA 12 Capacitance Drop Chirson Seedless 2278 224 2281 145 155 1600 1700 1700 122NS 14 Capacitance Drop Ped Globe 2116 1882 2200 2000 280 2200 2000 280 1236 12376 14 Tensioneter Drop Ped Globe 1400 1500 1800 1800 1800 1800 1800 1800 1800 1800 1800 2200 2000 280 2144 5 1800 2144 5 1800 2000 2000 2800 1000 12345 3	120TA	7	Other	l ow level	Thompson Seedless					2000	1800			2100
12010 (b) C) Umer (b) Umer (b) 1000 (b)	120TA	, 8	Dia	Drin	Thompson Seedless					2000	1000	1800	1700	1700
120TC 8 Dig Drip Thompson Seedless 1800 1700 2040 122CA 14 Capacitance Drip Cameria 1667 133 4450 1550 1160 1888 122CA 14 Capacitance Drip Cirnson Seedless 2278 224 280 250 1600 1931 450 150 160 1808 2230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 230 2414 230 230 2414 230 230 2414 230 230 230 2142 131 131 131 131 131 131 133 1410 1500 2500 1700 2500 1700 2500 1700 2500 1700 2500 1700 1802 2500 1700 1800 2500 1700 1800 2500 1700 1800<	120TC	5	Other	Low level	Thompson Seedless					2000	1800	1000	1700	
Tert IS To Other Low level Inompson Seedless 114b 122CA 14 Capacitance Drip Calmenia 1667 1333 1450 150 1160 1888 122CA 12 Capacitance Drip Calmenia 1667 1333 1450 150 500 2144 122R5 12 Capacitance Drip Renides 2217 12 12 128 12 12 128 12 12 128 12 12 128 12 12 128 12 12 128 12 12 128 12 12 108 02 2200 190 000 2100 1961 123G 12 11 Tensiometer Drip Autum Royal 2200 100 1550 280 1100 1900 2000 1600 0 1 124G 13 Tensiometer Drip Crimson Sedless 2000 1600 1800 1700 1 12450 43 1100 1900 2000 1000 2000 1000 2000 1200 1200 12400 4350 1100 1900 2000 1000 1700 0 12450 43 1000 1900 1700 0 12450 43 1000 1900 1700 0 1250 170 170 100 2250 1200 170 0 1250 170 170 100 2250 1000 <td< td=""><td>120TC</td><td>8</td><td>Dia</td><td>Drip</td><td>Thompson Seedless</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1800</td><td>1700</td><td>2040</td></td<>	120TC	8	Dia	Drip	Thompson Seedless							1800	1700	2040
122CA 14 Capacitance Drip Calmeria 1667 1333 1450 1550 1500 1160 1888 122K6 14 Capacitance Drip Neindee Seedless 2222 178 244 2550 2230 2350 122K6 14 Capacitance Drip Red Globe 2111 1367 1662 2225 1600 1961 122K7 14 Capacitance Drip Thompson Seedless 2166 1988 220 1600 800 2102 123K7 14 Tensiometer Drip Auturn Hoyal 2300 2900 0 2300 2900 0 123K6 14 Tensiometer Drip Crimson Seedless 2100 2000 1600 0 2200 000 0 124K6 3 Tensiometer Drip Crimson Seedless 2000 000 0 2550 0 700 0 125CM 9 Tensiometer Drip Meinidee Seedless 2000 1700 0 12556 180 1700 0 12556 180 1700 0 12556 118 1700 1800 1250 0 1250 170 0 12556 118 101 700 0 12556 150 1700 0 12556 150 1700 0 12556 150 1700 0 12556 150 1700 0 12556 150 1800 1700 0 </td <td>121TS</td> <td>10</td> <td>Other</td> <td>Low level</td> <td>Thompson Seedless</td> <td>1</td> <td></td> <td></td> <td></td> <td>1145</td> <td></td> <td></td> <td></td> <td></td>	121TS	10	Other	Low level	Thompson Seedless	1				1145				
122CR 12 Capacitance Drip Crimson Seedless 2778 2244 2550 2230 2560 122R5 12 Capacitance Drip Red Clobe 2111 1367 1682 2250 1680 2160 1961 123CR 12 Tensiometer Drip Auturn Hoyal 3100 2000 0 123CR 14 Tensiometer Drip Auturn Hoyal 3100 2000 160 123CR 14 Tensiometer Drip Red Clobe 1400 1500 1880 1445 0 123CR 13 Tensiometer Drip Red Clobe 2000 1000 2000 1000 0 124CS 1 Tensiometer Drip Crimson Seedless 2000 1000 2000 1000 200 1000 2250 1700 12504 1700 100 2250 1700 100 2250 1700 100 2250 1700 100 2	122CA	14	Capacitance	Drip	Calmeria				1667	1333	1450	1550	1160	1888
122K6 14 Capacitance Drip Menindee Seedless 2222 728 74 750<	122CR	12	Capacitance	Drip	Crimson Seedless				2778	2944	2850		2230	2350
122R6 14 Capacitance Capacitance Drip Drip Red Clobe 2111 1367 1682 2260 1600 1961 123R4 14 Tensiometer Drip Auturn Hoyal 3100 2000 0 123R5 14 Tensiometer Drip Auturn Hoyal 2200 2000 0 123R5 13 Tensiometer Drip Red Clobe 1400 1500 1880 1445 0 124C5 11 Tensiometer Drip Tensioneter Drip Tensioneter Drip Tensioneter 2000 1000 0 124C5 1 Tensiometer Drip Crimson Seedless 2200 1000 2200 3000 125C4 6 Tensiometer Low level Red Clobe 1600 1800 1700 100 2250 125C4 17 Tensiometer Low level Red Clobe 1600 1800 1700 100 2250 125C4 17 </td <td>122MS</td> <td>12</td> <td>Capacitance</td> <td>Drip</td> <td>Menindee Seedless</td> <td></td> <td></td> <td></td> <td>2222</td> <td>1789</td> <td>1218</td> <td>1950</td> <td>500</td> <td>2144</td>	122MS	12	Capacitance	Drip	Menindee Seedless				2222	1789	1218	1950	500	2144
12121S 12 Capacitance Drip Thompson Seedless 2166 1988 280 1800 2000 0 123CS 12 Tensiometer Drip Autumn Royal 2000 2000 0 123CS 12 Tensiometer Drip Presionmeter Drip Rod (At 4) 0 124CS 13 Tensiometer Drip Tompson Seedless 2200 2000 2350 124KS 14 Tensiometer Drip Orimson Seedless 2200 100 2900 100 124KE 13 Tensiometer Drip Orimson Seedless 2200 100 2350 124KE 5 Tensiometer Low level Orimson Seedless 2000 100 100 100 100 100 100 100 100 100 100 120 180 180 180 180 180 180 180 180 180 180 100 100 120 1250	122RG	14	Capacitance	Drip	Red Globe				2111	1367	1682	2250	1600	1961
123AR 14 lensionmeter Drip Auturn Hoyal	122TS	12	Capacitance	Drip	Thompson Seedless				2166	1988	280	1800	800	2102
123RG 14 Tensioneter Drip Chinson Seccless 2000 2000 2800 2435 0 123RG 14 Tensioneter Drip Thompson Seccless 1100 1500 2000 1600 0 0 124CS 1 Tensioneter Drip Tompson Seccless 2200 2000 1600 0 0 124KE 3 Tensioneter Drip Crimson Seccless 2200 1000 3000 1000 3000 1000 3000 1250 6 1100 1800 1700 1000 1200 1250 170 1800 1200 1200 1250 171 Tensioneter Low level Heinidee Secless 1700 1800 <td< td=""><td>123AR</td><td>14</td><td>Tensiometer</td><td>Drip</td><td>Autumn Royal</td><td></td><td></td><td></td><td></td><td>0000</td><td>0000</td><td>3100</td><td>2900</td><td>0</td></td<>	123AR	14	Tensiometer	Drip	Autumn Royal					0000	0000	3100	2900	0
123h5 31 Tensionmeter Drip Thorpson Seedless 1100 1900 2000 000 0 124LS 3 Tensionmeter Drip Thorpson Seedless 2000 000 0	123CS	12	Tensiometer	Drip	Crimson Seedless					2200	2000	2880	2245	0
1215 31 Tensioniter Drp All of the Seedless 2200 100 2350 124CS 11 Tensioniter Drp Crimson Seedless 2300 100 2350 124KE 31 Tensioniter Drp Menindee Seedless 2300 100 2350 124KE 5 Tensioniter Low level Armson Seedless 2300 100	123RG	14	Tensiometer	Drip	Red Globe					1400	1550	1880	1445	0
12-Coc 3 Tensionitetr Tensionitetr D'entread Outmon Seedless 2200 124ME 3 Tensionitetr D'entread Menindee Seedless 2300 124ME 5 Tensionitetr D'entread Menindee Seedless 2300 125CB 6 Tensionitetr Low level Crimson Seedless 3000 2100 3000 125GL 21 Tensionitetr Low level Red Globe 1600 1800 1700 0 125GH 19 Tensionitetr Low level Red Globe 1600 1800 1700 1800 2250 125MP 15 Tensionitetr Low level Menindee Seedless 1700 1800 2250 125MP 15 Tensionitetr Low level Thormpson Seedless 2000 1800 2100 125KA 27 Capacitance Drip Calientia 1430 1878 1850 127CA 18 Capacitance Drip Autumin Hoyal 2700	12313	31	Tensiometer	Overboad	Crimson Soodloss	<u> </u>				2200	1900	2000	1600	0
1 - Tool 1 - Tonisonation 0 - Drip Drip Drip Drip Drip Drip Drip Drip Drip Drip <thdrip< th=""> <thdrip< th=""> Drip<td>12400</td><td>- 3 - 11</td><td>Tensiometer</td><td>Drin</td><td>Crimson Seedless</td><td></td><td></td><td></td><td></td><td>2200</td><td>1800</td><td>2350</td><td></td><td></td></thdrip<></thdrip<>	12400	- 3 - 11	Tensiometer	Drin	Crimson Seedless					2200	1800	2350		
124ME 5 Tensiometer Drip Menindee Seadless 2000 2700 125CB 6 Tensiometer Low level Ormson Seadless 3000 2100 3000 125CL 21 Tensiometer Low level Red Globe 1600 1800 1700 125CL 21 Tensiometer Low level Red Globe 1600 1800 2250 125MF 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 125MF 15 Tensiometer Low level Menindee Seedless 2000 1800 2100 125T0 17 Tensiometer Low level Thompson Seedless 2000 1800 2100 126CA 27 Capacitance Drip Calmeria 1430 1450 1550 160 188 127CA 18 Capacitance Drip Ralmeria 1450 1550 160 188 127RA 13 Capacitance	12400 124MF	3	Tensiometer	Overhead	Menindee Seedless					2300	1000	2000		
1250B 6 1 ensionmeter Low level Crimson Seccless 3000 2100 3000 125CM 9 Tensionmeter Low level Crimson Seccless 3000 2200 3000 125GL 21 Tensionmeter Low level Red Globe 1600 1800 1700 0 125GH 15 Tensionmeter Low level Menindee Seedless 1700 1800 2250 125DH 15 Tensionmeter Low level Menindee Seedless 1700 1800 2250 125TO 17 Tensionmeter Low level Thompson Seedless 2000 2000 1800 1100 125TO 17 Tensionmeter Low level Thompson Seedless 2000 1000 1260 125TO 17 Tensionmeter Low level Thompson Seedless 1430 1678 1850 127CR 8 Capacitance Drip Calimeria 1450 1500 1160 1888 127CRE	124ME	5	Tensiometer	Drin	Menindee Seedless					2000	2500	1700		
125CM 9 Tensiometer Low level Crimson Secilless 3000 2200 3000 125GL 21 Tensiometer Low level Red Globe 1600 1800 1700 0 125MF 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 125MF 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 1250H 17 Tensiometer Low level Tompson Seedless 2000 2000 2000 125T0 17 Tensiometer Low level Tompson Seedless 1900 1900 1850 1100 125KA 27 Capacitance Drip Auturm Hoyal 2700 2667 266 127CA 8 Capacitance Drip Calmeria 1450 1550 160 1888 127RL 13 Capacitance Drip Red Globe 2100 2667 2560 127ME 13 <	125CB	6	Tensiometer	Low level	Crimson Seedless						3000	2100	3000	
125GR 1 Tensiometer Low level Red Globe 1600 1700 0 125MF 15 Tensiometer Low level Menindee Seadless 1700 1800 1700 0 125MF 15 Tensiometer Low level Menindee Seadless 1700 1800 2250 125T0 17 Tensiometer Low level Menindee Seadless 2000 800 2100 125T0 17 Tensiometer Low level Thompson Seedless 1900 1900 1800 2100 126CA 27 Capacitance Drip Calmeria 1430 1678 1850 127CR 18 Capacitance Drip Calmeria 1450 150 1160 1888 127KE 13 Capacitance Drip Flame Seedless 2210 3100 179 3431 127KE 13 Capacitance Drip Flame Seedless 2200 2400 2602 127KE 13<	125CM	9	Tensiometer	Low level	Crimson Seedless						3000	2200	3000	
125GR 19 Tensiometer Low level Red Globe 1600 1800 1700 0 125MH 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 125DH 17 Tensiometer Low level Menindee Seedless 12000 2000 125T0 17 Tensiometer Low level Thompson Seedless 1900 1800 2100 125T6 17 Tensiometer Low level Thompson Seedless 1900 1800 2100 125T6 17 Capacitance Drip Autumn Royal 2700 1800 2100 127CA 18 Capacitance Drip Fatter Seedless 2800 2607 2665 127CA 8 Capacitance Drip Fatter Seedless 2700 1600 1931 127RG 13 Capacitance Drip Autumn Royal 2800 2800 2800 2800 2800 2800 2800 2800 2800 </td <td>125GL</td> <td>21</td> <td>Tensiometer</td> <td>Low level</td> <td>Red Globe</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1600</td> <td>1800</td> <td>1700</td> <td></td>	125GL	21	Tensiometer	Low level	Red Globe						1600	1800	1700	
125MP 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 125MP 17 Tensiometer Low level Menindee Seedless 1700 1800 2250 125MP 17 Tensiometer Low level Thompson Seedless 2000 1800 2100 125TS 5 Tensiometer Low level Thompson Seedless 1900 1900 1800 2100 127CR 16 Capacitance Drip Calmeria 1430 1678 1850 127CR 18 Capacitance Drip Calmeria 1450 1550 1160 1888 127CR 13 Capacitance Drip Calmeria 1450 150 1600 1218 190 900 1900 1700 3335 127RF 13 Capacitance Drip Autum Royal 2700 1600 1218 1250 1600 1273 128GR 12 Capacitance Drip	125GR	19	Tensiometer	Low level	Red Globe						1600	1800	1700	0
125MP 15 Tensiometer Low level Menindee Seedless 1700 1800 2250 125T0 17 Tensiometer Low level Thompson Seedless 2000 1800 2100 125TS 5 Tensiometer Low level Thompson Seedless 1900 1900 1850 2100 125TA 6 Capacitance Drip Calmeria 1430 1678 1850 127CA 18 Capacitance Drip Calmeria 1450 150 1160 1888 127CR 8 Capacitance Drip Calmeria 1450 150 1160 188 127CH 13 Capacitance Drip Atturn Royal 2806 2100 1306 214 127RE 13 Capacitance Drip Red Globe 2210 3069 2410 2173 128GR 12 Capacitance Drip Red Globe 2410 2173 128GR 2 Capacit	125MH	15	Tensiometer	Low level	Menindee Seedless						1700	1800	2250	
125CH 17 Tensiometer Low level Ohanez 2000 2000 125TO 17 Tensiometer Low level Thompson Seedless 2000 1900 1850 2100 125TS 5 Tensiometer Low level Thompson Seedless 1900 1900 1850 2100 126CA 27 Capacitance Drip Calmeria 1430 1678 1850 127CR 8 Capacitance Drip Calmeria 1450 1550 1160 1888 127FL 23 Capacitance Drip Flame Seedless 22700 300 1790 3431 127FL 13 Capacitance Drip Red Globe 1682 2000 1809 128CR 12 Capacitance Drip Red Globe 2410 2173 128GR 12 Capacitance Drip Red Globe 2410 2173 128GS 2 Tensiometer Drip Red Globe <t< td=""><td>125MP</td><td>15</td><td>Tensiometer</td><td>Low level</td><td>Menindee Seedless</td><td></td><td></td><td></td><td></td><td></td><td>1700</td><td>1800</td><td>2250</td><td></td></t<>	125MP	15	Tensiometer	Low level	Menindee Seedless						1700	1800	2250	
125TG 17 Tensiometer Low level Thompson Seedless 900 1900 1850 2100 125TS 5 Tensiometer Drip Calmeria 1430 1678 1850 127AR 6 Capacitance Drip Calmeria 1430 1550 1160 1880 127CA 18 Capacitance Drip Calmeria 1450 1550 1160 1888 127CR 8 Capacitance Drip Flame Seedless 22100 1000 1850 500 2144 127RG 13 Capacitance Drip Menindee Seedless 22100 1600 1682 2700 100 1850 500 1441 127RG 13 Capacitance Drip Autumn Royal 2800 3356 1286R 12 Capacitance Drip Crimson Seedless 2400 2800 2800 2800 2800 2800 2800 2800 2800 2800 2800 2800	125OH	17	Tensiometer	Low level	Ohanez						2000	2000		
125TS 5 Tensiometer Low level Thompson Seedless 1900 1900 1850 2100 128CA 27 Capacitance Drip Calmeria 1430 1678 1850 127AR 6 Capacitance Drip Calmeria 1450 1550 1160 188 127CR 8 Capacitance Drip Crimson Seedless 2260 2400 2667 2686 127FL 23 Capacitance Drip Meinidee Seedless 2181 1550 500 2144 127RE 13 Capacitance Drip Red Globe 1682 2700 1600 1961 128CR 12 Capacitance Drip Autum Royal 3069 3358 12865 2800 3358 12865 2800 3358 12865 2200 2400 2000 1297 1280 2201 1800 1600 2000 2000 1297 12865 2200 2400 2000 2	125TO	17	Tensiometer	Low level	Thompson Seedless						2000	1800	2100	
12bCA 27 Capacitance Drip Calmeria 1430 16/8 1850 127AR 6 Capacitance Drip Autum Royal 2702 2862 2868 127CA 18 Capacitance Drip Crimson Seedless 2850 2400 2867 2800 2867 2400 2867 2400 2867 2800 2867 2400 2867 2300 2867 2300 2867 2300 2867 2300 2868 1218 1950 500 2141 1950 500 2141 1813 500 2141 1813 500 2141 1813 500 2141 1813 1826 1218 1950 500 2141 2173 2173 218268 12 Capacitance Drip Autum Royal 3069 2121 2133 2200 2400 2200 2400 2200 2400 2200 2400 2200 2400 2200 2000 2000 2000 2	125TS	5	Tensiometer	Low level	Thompson Seedless					1900	1900	1850	2100	
IZ/AR 6 Capacitance Drip Autumn Hoyal 2/00 2667 2660 IZ/CA 8 Capacitance Drip Cimson Seedless 2850 2400 2667 2350 IZ/TL 23 Capacitance Drip Hame Seedless 2700 3100 1790 3431 IZ/TL 13 Capacitance Drip Red Globe 1682 2700 1600 1961 IZRAR 4 Capacitance Drip Red Globe 1682 2700 1600 1961 IZRAR 4 Capacitance Drip Red Globe 2410 2173 IZRGR 12 Capacitance Drip Red Globe 2410 2173 IZRGS 12 Capacitance Drip Red Globe 2410 2173 IZRGS 12 Capacitance Drip Red Globe 2400 2000 2000 IZSR 4 Other Drip Thompson Seedless 2200	126CA	27	Capacitance	Drip	Calmeria						1430	16/8	1850	0000
12/CR 16 Capacitance Drip Camerican Compacitance Drip Flame Seedless 2250 2400 2667 2350 12/TR 13 Capacitance Drip Flame Seedless 2210 3100 1790 3431 12/TR 13 Capacitance Drip Red Globe 1218 1950 500 2144 12/RG 12 Capacitance Drip Autum Royal 3069 3068 128GR 12 Capacitance Drip Red Globe 2410 2173 128GR 12 Capacitance Drip Red Globe 2410 2173 128GR 12 Capacitance Drip Red Globe 2410 2173 128GR 12 Capacitance Drip Red Globe 2400 2600 2000 129SS 2 fersionsemeter Drip Red Globe 2000 2000 2000 130SR 6 Other Drip Menindee See	127AR	6 10	Capacitance	Drip	Autumn Royal						1450	1550	2667	2000
127FL 23 Capacitance Drip Flame Seedless 2700 2007 2300 127FL 13 Capacitance Drip Hame Seedless 1218 1950 500 2144 127RG 13 Capacitance Drip Auturn Royal 3069 1282 1218 1950 500 2144 128AR 4 Capacitance Drip Auturn Royal 3069 3368 1286R 12 Capacitance Drip Red Globe 2410 2173 128GR 12 Capacitance Drip Red Globe 2410 2173 128GS 12 Capacitance Drip Red Globe 2000 2000 2000 129SS 2 Iensioneter Drip Timpson Seedless 2000 2000 2000 130SR 6 Other Drip Thompson Seedless 2000 2000 100 131RG 29 Other Drip Red Globe 1100 1300	127CA	10 Q	Capacitance	Drip	Califiena Crimson Soodloss						2850	2400	2667	2250
Line Line <thlin< th=""> Line Line L</thlin<>	127011 127El	23	Capacitance	Drip	Flame Seedless						2000	2400	1700	2000
Tarme To Drip Manual Global Tarte G	127ME	13	Capacitance	Drip	Menindee Seedless						1218	1950	500	2144
128AR4CapacitanceDrip Crimson SeedlessAuturm Royal Crimson Seedless3069128CR12CapacitanceDripCrimson Seedless28003358128GS12CapacitanceDripRed Globe24102173128GS12CapacitanceDripRed Globe24102173129CS2TensiometerDripCrimson Seedless220024002200129FL30OtherDripFlame Seedless220024002200129SO52OtherDripThompson Seedless20002000130SR6OtherDripCrimson Seedless20002000131RG27OtherDripCrimson Seedless28002000131RG27OtherDripRed Globe11001300131RG29OtherDripRed Globe18001300131RG29OtherDripRed Globe18001300132AR4OtherDripAuturm Royal33802500132CJ2OtherDripCrimson Seedless00132CK4OtherDripCrimson Seedless30000132AR4OtherDripCrimson Seedless30000132CH2OtherDripCrimson Seedless30000132CH3OtherDripCrimson Seedless30000	127RG	13	Capacitance	Drip	Red Globe						1682	2700	1600	1961
128CR12CapacitanceDripCrimson Seedless2800 3358128GR12CapacitanceDripRed Globe2410 2173128GS12CapacitanceDripRed Globe2410 2173129CS2IensiometerDripFlame Seedless2200 2400 2200129FL30OtherDripFlame Seedless2200 2400 2200129SC52OtherDripThompson Seedless2000 2000130SR6OtherDripThompson Seedless2000 2000131KS4OtherDripMenindee Seedless2000 2000131KG29OtherDripRed Globe1100131RG29OtherDripRed Globe1100131RG29OtherDripRed Globe1800 1700131YG3OtherDripAutumn Royal3380 2500132CP11OtherDripCrimson Seedless0132CR4OtherDripCrimson Seedless0132CR8OtherDripCrimson Seedless0132CR12OtherDripCrimson Seedless0132KS12OtherDripCrimson Seedless0132CR8OtherDripCrimson Seedless0132KS12OtherDripCrimson Seedless0132KS12OtherDripRed Globe1800132MB2OtherDri	128AR	4	Capacitance	Drip	Autumn Roval								3069	
128GR 128GR 128GS12Capacitance CapacitanceDrip DripRed Globe Red Globe24102173 24102173129CS2TensiometerDripDripRed Globes20002000129FL30OtherDripFlame Seedless20002000129SC52OtherDripThompson Seedless20002000130SR6OtherLow levelThompson Seedless20002000131KG27OtherDripCrimson Seedless20002000131KG29OtherDripRed Globe11001500131KG29OtherDripRed Globe18001300131KG29OtherDripThompson Seedless18001700132AR4OtherDripAutumn Royal33802500132CP11OtherDripCrimson Seedless00132CR4OtherDripCrimson Seedless00132CR11OtherDripCrimson Seedless00132CR2OtherDripRed Globe18000132CR11OtherDripCrimson Seedless00132KB2OtherDripCrimson Seedless00132CR11OtherDripRed Globe18001000132KB2OtherDripRed Globe180001	128CR	12	Capacitance	Drip	Crimson Seedless							2800	3358	
128GS12CapacitanceDripRed Globe24102173129CS2TensiometerDripCrimson Seedless2000129FL30OtherDripFlame Seedless2200129SO52OtherDripThompson Seedless2000130SR6OtherLow levelThompson Seedless2000131CS4OtherDripOtherson Seedless2000131RG29OtherDripMenindee Seedless1500131RG29OtherDripRed Globe1100131RG29OtherDripRed Globe1800131RG3OtherDripRed Globe1800131RG29OtherDripRed Globe1800131RG3OtherDripRed Globe1800131XG3OtherDripRed Globe1800132CJ2OtherDripCrimson Seedless0132CJ2OtherDripCrimson Seedless0132CR8OtherDripCrimson Seedless3000132CR12OtherDripCrimson Seedless0132MS12OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless0132MS14CapacitanceLow levelMenindee Seedless2600133MS11CapacitanceLow levelHame Seedless<	128GR	12	Capacitance	Drip	Red Globe							2410	2173	
129CS2TensiometerDripCrimson Seedless2000129FL30OtherDripFlame Seedless220024002200129SO52OtherDripThompson Seedless180016002000130SR6OtherLow levelThompson Seedless20002000131CS4OtherDripCrimson Seedless20002000131ME2OtherDripCrimson Seedless20002000131RG29OtherDripRed Globe11001500131RG29OtherDripRed Globe18001300131SS4OtherDripThompson Seedless18001700132AR4OtherDripAutumn Royal33802500132CR11OtherDripCrimson Seedless0132CR2OtherDripCrimson Seedless0132CR2OtherDripCrimson Seedless0132CR11OtherDripCrimson Seedless0132CR2OtherDripCrimson Seedless0132CR11OtherDripCrimson Seedless0132CR2OtherDripCrimson Seedless0132CR11CtherDripMenindee Seedless0132CR12OtherDripMenindee Seedless0132MB2OtherDrip	128GS	12	Capacitance	Drip	Red Globe							2410	2173	
129FL30OtherDripFlame Seedless220024002200129SO52OtherDripThompson Seedless180016002000130SR6OtherLow levelThompson Seedless20002000131KE2OtherDripCrimson Seedless20002000131RG27OtherDoirpMenindee Seedless1500131RG29OtherDripRed Globe1100131RG29OtherDripRed Globe18001300131SS4OtherDripRed Globe18001700131RG3OtherDripRed Globe18001700131SG4OtherDripRed Globe18001700131SG4OtherDripCrimson Seedless00132CP11OtherDripCrimson Seedless00132CR8OtherDripCrimson Seedless00132CR8OtherDripMenindee Seedless00132CR12OtherDripMenindee Seedless00132CR12OtherDripMenindee Seedless00132CR12OtherDripMenindee Seedless00132CR12OtherDripRed Globe18501850132MB2OtherDripRed Globe18500 <t< td=""><td>129CS</td><td>2</td><td>Tensiometer</td><td>Drip</td><td>Crimson Seedless</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2000</td></t<>	129CS	2	Tensiometer	Drip	Crimson Seedless									2000
129SO52OtherUrpIhompson Seedless180016002000130SR6OtherLow levelThompson Seedless200020002000131CS4OtherDripCrimson Seedless280020002000131RG27OtherDripMenindee Seedless15001500131RG29OtherDripRed Globe110018001300131SS4OtherDripRed Globe18001700131SS4OtherDripRed Globe18001700131SZ4OtherDripRed Globe18001700131SZ4OtherDripRed Globe18001700132CR4OtherDripCrimson Seedless00132CR4OtherDripCrimson Seedless0000132CR8OtherDripCrimson Seedless0000132CR8OtherDripGrimson Seedless00132NB2OtherDripMenindee Seedless00132NS11CapacitanceLow levelKenindee Seedless18000132NS11CapacitanceLow levelHame Seedless35333533134H120CapacitanceLow levelHame Seedless3553134M22CapacitanceLow levelMenindee Seedless0134M35 <td>129FL</td> <td>30</td> <td>Other</td> <td>Drip</td> <td>Flame Seedless</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2200</td> <td>2400</td> <td>2200</td>	129FL	30	Other	Drip	Flame Seedless							2200	2400	2200
130SH6OtherLow levelInompson Seedless20002000131KE2OtherDripCrimson Seedless28002000131ME2OtherDripMenindee Seedless1500131RG27OtherLow levelRed Globe1100131RG29OtherDripRed Globe18001300131SS4OtherDripThompson Seedless18001700131YG3OtherDripAutum Royal33802500132AR4OtherDripCrimson Seedless0132CJ2OtherDripCrimson Seedless0132CR8OtherDripCrimson Seedless0132KR2OtherDripCrimson Seedless0132CR8OtherDripCrimson Seedless0132KR9OtherDripMenindee Seedless0132KR9OtherDripMenindee Seedless2600132MS11CapacitanceLow levelCrimson Seedless2600133MS11CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelFlame Seedless3553134M35CapacitanceLow levelMenindee Seedless3553134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee	129SO	52	Other	Drip	Thompson Seedless	ļ						1800	1600	2000
131GS4OtherDripOrmson Seecless28002000131RG27OtherDripMenindee Seecless11001300131RG29OtherDripRed Globe110018001300131SS4OtherDripThompson Seedless18001700131YG3OtherDripRed Globe18001700132AR4OtherDripAutumn Royal33802500132CJ2OtherDripCrimson Seedless00132CP11OtherDripCrimson Seedless00132CR8OtherDripCrimson Seedless30000132KB2OtherDripCrimson Seedless00132KB12OtherDripMenindee Seedless00132MS11CapacitanceLow levelCrimson Seedless26002009132MS11CapacitanceLow levelMenindee Seedless18000134K129CapacitanceLow levelMenindee Seedless3553134M120CapacitanceLow levelMenindee Seedless3553134M120CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow	130SH	6	Other		Inompson Seedless							2000	2000	0000
131 RG 131 RG27OtherLow levelRed Globe1100131 RG 2929OtherDripRed Globe1100131 RG 3029OtherDripThompson Seedless18001300131 YG 33OtherDripThompson Seedless18001700131 RG 33OtherDripRed Globe18001800131 YG 33OtherDripAutumn Royal33802500132 CJ 132 CJ2OtherDripCrimson Seedless00132 RF 132 RF8OtherDripCrimson Seedless30000132 RF 132 RF8OtherDripCrimson Seedless00132 RF 132 RF9OtherDripMenindee Seedless00132 RF 132 RF9OtherDripMenindee Seedless00132 RF 132 RF9CapacitanceLow levelCrimson Seedless18000132 RF 	12110	4 0	Other	Drip	Uninson Seedless								2000	2000
131 RG29OtherDripRed Globe18001300131 SS4OtherDripRed Globe18001700131 YG3OtherDripRed Globe18001700132 AR4OtherDripAutumn Royal33802500132 CJ2OtherDripCrimson Seedless0132 R8OtherDripCrimson Seedless0132 R1OtherDripCrimson Seedless0132 R2OtherDripCrimson Seedless0132 R8OtherDripCrimson Seedless0132 R8OtherDripCrimson Seedless0132 R9OtherDripMenindee Seedless0132 R9OtherDripMenindee Seedless0132 R9OtherDripRed Globe1850132 R9OtherDripRed Globe1850132 R9OtherDripRed Globe1850133 MS11CapacitanceLow levelCrimson Seedless2600134 F129CapacitanceLow levelHame Seedless3553134 M120CapacitanceLow levelMenindee Seedless3553134 M22CapacitanceLow levelMenindee Seedless0134 M35CapacitanceLow levelMenindee Seedless0134 M35 <t< td=""><td></td><td>2 97</td><td>Other</td><td></td><td>Red Cloba</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1100</td><td></td><td>1300</td></t<>		2 97	Other		Red Cloba							1100		1300
131SS4OtherDripThompson Seedless18001700131YG3OtherDripRed Globe18001700132AR4OtherDripAutumn Royal33802500132CJ2OtherDripCrimson Seedless0132CP11OtherDripCrimson Seedless30000132CR8OtherDripCrimson Seedless31502185132MB2OtherDripMenindee Seedless00132RS12OtherDripMenindee Seedless00132RS11CapacitanceLow levelCrimson Seedless26002009133RS11CapacitanceLow levelCrimson Seedless18000134F129CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless3553134M22CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless0134M37CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755134M47CapacitanceLow levelMenindee S	131BG	29	Other	Drin	Red Globe							1100	1800	1300
131YG3OtherDripRed Globe1600132AR4OtherDripAutumn Royal33802500132CJ2OtherDripCrimson Seedless0132CP11OtherDripCrimson Seedless30000132CR8OtherDripCrimson Seedless30000132RB2OtherDripCrimson Seedless0132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless0132RG9OtherDripRed Globe1850132RG9OtherDripRed Globe1850132RS11CapacitanceLow levelCrimson Seedless1800134F129CapacitanceLow levelHame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless0134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	13155	4	Other	Drip	Thompson Seedless								1800	1700
132AR4OtherDrip DripAutumn Royal33802500132CJ2OtherDripCrimson Seedless0132CP11OtherDripCrimson Seedless30000132CR8OtherDripCrimson Seedless31502185132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless0132RG9OtherDripMenindee Seedless0132RG9OtherDripRed Globe1850133RS11CapacitanceLow levelCrimson Seedless1800134F129CapacitanceLow levelHame Seedless3553134M120CapacitanceLow levelFlame Seedless3553134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	131YG	3	Other	Drip	Red Globe								1800	
132CJ2OtherDripCrimson Seedless0132CP11OtherDripCrimson Seedless30000132CR8OtherDripCrimson Seedless31502185132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless0132RG9OtherDripMenindee Seedless2600132RG9OtherDripRed Globe1850133CS11CapacitanceLow levelCrimson Seedless1800134F129CapacitanceLow levelHame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless0134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	132AR	4	Other	Drip	Autumn Roval								3380	2500
132CP11OtherDripCrimson Seedless30000132CR8OtherDripCrimson Seedless31502185132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless0132RG9OtherDripMenindee Seedless2600132RG9OtherDripRed Globe1850133CS11CapacitanceLow levelCrimson Seedless1800134F129CapacitanceLow levelHame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless1755134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	132CJ	2	Other	Drip	Crimson Seedless									0
132CR8OtherDripCrimson Seedless31502185132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless26002009132RG9OtherDripRed Globe18501838133CS11CapacitanceLow levelCrimson Seedless18000133HS11CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless0134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	132CP	11	Other	Drip	Crimson Seedless								3000	0
132MB2OtherDripMenindee Seedless0132MS12OtherDripMenindee Seedless26002009132RG9OtherDripRed Globe18501838133CS11CapacitanceLow levelCrimson Seedless18000133HS11CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless0134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless0	132CR	8	Other	Drip	Crimson Seedless								3150	2185
132MS12OtherDripMenindee Seedless26002009132RG9OtherDripRed Globe18501838133CS11CapacitanceLow levelCrimson Seedless18000133MS11CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless1755134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755	132MB	2	Other	Drip	Menindee Seedless	VVVVVVVVVV VVVVVVVVVVVVVVVVVVVVVVVVVVV								0
132HG9OtherDripRed Globe18501838133CS11CapacitanceLow levelCrimson Seedless18000133MS11CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless1755134M22CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755	132MS	12	Other	Drip	Menindee Seedless								2600	2009
133CS11CapacitanceLow levelCrimson Seedless18000133MS11CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless3553134M22CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755	132RG	9	Other	Drip	Red Globe								1850	1838
1331V511CapacitanceLow levelMenindee Seedless21500134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless3755134M22CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755	133CS		Capacitance	Low level	Crimson Seedless								1800	0
134F129CapacitanceLow levelFlame Seedless3553134F29CapacitanceLow levelFlame Seedless3553134M120CapacitanceLow levelMenindee Seedless1755134M22CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless1755134M47CapacitanceLow levelMenindee Seedless1755	133MS	11	Capacitance	Low level	Ivienindee Seedless								2150	0
1341220CapacitanceLow levelFrame Seedless3553134M22CapacitanceLow levelMenindee Seedless1755134M35CapacitanceLow levelMenindee Seedless0134M35CapacitanceLow levelMenindee Seedless1755134M47CapacitanceLow levelMenindee Seedless1755	13451	29	Capacitance		Flame Seedless									3223
134M22CapacitanceLow levelMenindee Seedless1755134M35CapacitanceLow levelMenindee Seedless0134M47CapacitanceLow levelMenindee Seedless1755	13452	20	Capacitance		Fiame Seedless									1755
134M3 5 Capacitance Low level Menindee Seedless 1755 134M4 7 Capacitance Low level Menindee Seedless 1755	1341/0	20	Capacitance		Menindee Seedless									0
134M4 7 Capacitance Low level Menindee Seedless 1755	134M3	5	Capacitance		Menindee Seedless									1755
	134M4	7	Capacitance	Low level	Menindee Seedless									1755

0.4			Wa	ater ap	plied	ML/ha	a)					Estim	ated o	drainag	ge (ML	/ha)		
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							7.34									2.84		
101MD	5.51	4.14	6.76	6.32	6.19	4.85	7.24			0.41	0.25	0.93	1.51	1.83	1.04	2.68		
101RG	5.51	4.51	6.76	6.32	6.45	5.59	7.34			0.34	0.35	0.93	1.51	1.51	1.34	2.84		
101TS	5.51	4.46	6.76	6.32	6.24	5.27	7.34			0.37	0.18	0.90	1.41	1.44	1.10	2.84		
102CR						3.98	14.97	12.61							0.72	6.45	6.06	
102FL						o - o			3.40							4 = 0		0.66
102102						8.78	13.31	7 00	4.04						3.31	4.56	4 70	0.74
102112						0.75	10.00	7.93	4.21						0.01	0.05	1.78	0.71
102100						3.75	10.39	0.10	3.00						0.91	2.35	2.15	0.51
1021VII	737	6.67	8 35	8/6					4.13	0.73	0.11	1 50	1 30		•			0.75
103CN	1.01	0.07	8.35	8.46						0.70	0.11	1.50	1.39					
103FS	7.37	6.52	0.00	00						0.78	0.10							
103MD	7.37	7.15	8.35	8.46						0.78	0.33	1.50	1.39					
103RG	7.37	7.15	8.35	8.46						0.78	0.51	1.50	1.39					
103TS	7.37	7.15	8.35	8.46						0.78	0.33	1.50	1.39					
104FS						6.52	7.90								1.92	0.68		
104FS						0.50	7 00	5.88	3.48						1 00	0.45	0.58	0.70
104H5						6.52	7.63	F 00	4 77						1.92	0.45	0.07	0 70
10400						6 50	0.05	5.89	4.77						1 04	0.67	0.67	0.73
1041VIS						0.52	0.05	5 92	3 4 5						1.94	0.07	0.61	0 69
104RG							7 90	0.02	0.40							0.57	0.01	0.00
104RG							7.00	5.66	3.45							0.07	0.34	0.67
105FL	10.98	13.01	11.87	16.86	11.88					3.27	4.61	4.71	9.63	6.07				
105MD	10.98	13.01	11.87	16.86	13.15					3.30	4.64	4.77	9.91	7.52				
105RG	10.98	13.01	11.57	16.86	18.24					3.30	4.70	4.73	9.89	11.52				
105TS	10.98	12.70	11.87	16.86	17.18					3.27	4.68	4.71	9.73	9.78				
106CM	11.45	8.73								4.07	1.77							
106CR	4.91	5.73								0.78	0.37							
106MD	4.91	5.73								0.78	0.37							
106HG	5.18 / 01	6.00 5.73								0.78	0.37							
10013 107CB	4.31	5.75	8 91	9.08	7 85					0.70	0.37	2 16	1 99	1 02				
107 OI1	6 84	7 21	9.07	9.00	7.85					1 24	0 50	2.10	1.93	0.83				
107MD	6.84	7.21	9.02	9.08	7.85					1.26	0.53	2.32	1.93	0.83				
107RE	6.84	7.21	8.80	9.08	7.85					1.26	0.53	2.32	1.93	0.83				
107RG	6.84	7.21	9.07	9.08	7.85					1.24	0.50	2.32	1.93	0.83				
107TS			8.88	9.08	7.85							2.29	1.99	0.81				
108MD	5.38	5.38	9.78	9.78						1.30	2.29	3.95	4.27					
109CR									4.01									0.67
109FA							7 40	F 00	4.01							1 10	0 10	0.67
109RG							7.49	5.06	4.04							1.10	0.19	0.67
110920	8 90	10.94	11.62	13 35	13 77	8.62	15.62	5.04	4.01	2 19	3.62	4 16	6.51	6 64	1 14	8.40	0.19	0.07
110AB	0.50	10.54	11.02	10.00	10.77	0.02	10.02	8 66	2 21	2.15	0.02	4.10	0.01	0.04	1.14	0.40	2 07	0 14
110BC	5.93	7.55						0.00		0.83	1.36						2.07	0.1.1
110BC			10.38	12.50	13.77	9.23	15.62					3.23	5.68	6.60	1.63	8.40		
110BC								8.32	2.20								1.73	0.26
110CM	8.90	10.94	9.46	6.73	13.77	9.15	15.15			2.29	3.66	2.40	1.16	6.69	1.78	7.88		
110CM								8.56	1.79								1.86	0.15
110DC	8.90	10.94	10.23	6.73	13.77	<u> </u>	8 5 1	0.00		2.06	3.40	2.89	1.39	6.57				
1111HG	2.78	5.01	4.05	4.19	4.44	2.49	2.51	3.66	1.8/	0.08	0.85	0.05	0.00	0.26	0.15	0.04	0.13	0.00
11000	3.04	5.16	0.58 11.25	4.88	0.22	3.19	2.61	4.33	2.31	0.15	1.42	1.09	0.5/ 310	1.47	0.24	0.04	0.36	0.00
112RG			8 52	8.06								1 38	0.40					
112TS			8.69	7.90								1.37	0.59					
113MD	8.90	8.43	5.77	7.86	6.55	6.30	6.43	6.63	4.62	2.83	1.76	0.85	1.52	0.65	1.44	1.66	0.70	0.48
113RG	7.23	8.13	7.24	8.93	7.68	7.57	7.63	7.72	5.56	2.19	1.88	1.65	1.93	1.48	2.59	2.61	1.53	0.40
114MS	8.48	8.02	15.47	15.32						1.76	0.55	7.88	8.19			6		
114RG	8.55	8.48	14.50	14.36						1.76	0.83	6.94	7.25					
115RG	10.64	9.83	0.00							2.75	1.82	4.00						
115RG			6.98	912 611	/ 100-						4 700	1.66	6 11					
116FS	7.04	0.49 10 92	11.00	12.09	7.05					0.30	1./U 2.71	4.02	0.10 5 20	2.45				
	1.02	10.00	11.57	12.09	10.77					0.37	<u>~</u> ./	4.59	5.00	3.86				
116RG	/.66	12.93	11.43	12.60	9.82					0.46	4.55	4.29	5.03	3.13				
116TS	7.69	11.27	11.75	12.69	9.45					1.05	3.31	4.66	5.15	2.85				
117RG	5.39	5.13	6.53	7.62						0.42	0.15	0.28	1.09					
117TS	5.37	5.08	6.53	7.50						0.47	0.21	0.28	3.87					
118CA				7.90									1.33					
118CR				8.30									2.15					
118FS				8.50									2.58					
				0.5U									2.56					
IIOKG				0.00									1.40					

0.4.0			W	ater ap	plied	(ML/ha	a)					Estim	ated o	draina	ge (ML	/ha)		
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				7.50									2.10					
118TS			*****	7.40					4.01				2.21					0.40
119CR									4.61									0.40
119MF					7.07	6.82			4.01					2.34	0.49			0.50
119ME						0.01	7.34	7.36	4.61						00	2.16	1.19	0.40
119MF					7.07	6.82								2.34	0.49			
119MF					0 70	7 00	7.25	7.33	4.64					4 07	0.40	2.10	1.25	0.40
119RG					8.79	7.32	7 5 1	7 46	1 72					1.87	0.49	2.28	1 26	0.25
119TS					7 1 1	6 82	7.51	7.40	4.73					1 84	0 49	2.20	1.20	0.55
120CR					10.35	8.20								3.39	1.26			
120CR							7.60	7.60	4.55							2.47	1.50	0.51
120MB					o ==				4.55					o o=	o - o			0.38
1201A					8.77	6.58	7 40	7 62	1 55					3.25	0.76	2 40	1 5 2	0 10
120TA					8.84	6.58	7.49	7.03	4.55					3.61	0.76	2.40	1.55	0.40
120TC					0.0.	0.00	7.49	7.51	4.55					0.0.	00	2.40	1.41	0.48
121 I S					6.47									1.10				
122CA				7.04	5.43	5.51	6.57	5.61	4.27				1.24	1.40	0.95	1.13	0.97	1.03
1220R				7.04	5.43	4.83	6.34 7.68	5.61	4.31				1.24	1.40	0.73	0.97	0.44	1.06
122RG				8.64	8.44	5.51	8.11	5.62	4.31				2.15	2.59	0.95	2.00	0.93	1.06
122TS				7.41	7.20	6.11	7.80	5.62	4.31				1.17	1.50	1.34	1.65	0.99	1.06
123AR							7.61	7.90	1.30							0.40	0.88	0.02
123CS					8.82	7.72	7.67	7.81	1.30					2.09	0.56	0.45	0.84	0.02
123RG					8.82	7.72	8.79 7 qq	7.90	1.30					2.04	0.56	1.47	0.84	0.02
12313 124CS			******		4.30	1.12	1.33	7.07	1.00					0.26	0.40	0.00	0.04	0.02
124CS						1.85	6.28								0.08	0.32		
124ME					3.44									0.41				
124ME						1.03	6.06	0.01							0.08	0.50	0.64	
125CM						5 29	8.34	9.21							1.31	1.94	2.04	
125GL						5.29	8.55	8.44							1.04	1.75	2.46	
125GR						5.29	8.55	8.44							0.99	1.58	2.42	
125MH						5.29	8.51	9.34							1.04	1.24	2.42	
125MP						5.29	8.61	9.34							1.04	1.51	2.83	
125UH						6.00	0.27 8.23	7 76							1.31	1.57	2 4 2	
125TS					4.93	6.00	9.09	7.76						0.69	1.31	1.49	2.59	
126CA						5.27	6.59	7.03							0.30	0.61	0.86	
127AR						5.39	4.90	4.82	3.98						0.75	0.11	0.37	1.34
127CA						5.39	4.90	4.85	3.98						0.75	0.12	0.37	1.34
1276H						6.52	4.90	4.91	3.98						0.43	0.12	0.42	1.34
127ME						5.39	4.90	5.56	3.98						0.74	0.12	0.30	1.34
127RG						5.39	4.90	4.86	3.98						0.75	0.12	0.39	1.34
128AR							6.67	6.47								0.16	0.53	
128GR							9.21 6.79	0.90 6.64								0.38	0.07	
128GS							6.79	6.64								0.38	0.33	
129CS			*****				-		6.22									1.06
129FL							7.79	6.10	6.25							0.82	0.75	1.09
12950			r				1.79	6.03	6.25							0.67	0.70	1.09
131CS			~~~~				0.00	5.53	5.15							0.00	0.20	0.67
131ME								2.00	5.15								2.02	0.65
131RG							9.07	_ :	_							1.71		
131RG								5.16	5.15								0.42	0.66
13155								5.51 5.21	5.15								0.52	0.66
132AR								6.85	2.67								0.64	0.22
132CJ									2.67									0.22
132CP								6.74	2.67								0.66	0.22
132CR								6.59	2.67								0.55	0.22
132MS								6 68	2.07								0 58	0.20
132RG								6.59	2.67								0.54	0.22
133CS								9.65	3.11								3.88	0.89
133MS								9.65	3.11								3.93	0.92
134F1									4.18 ⊿ ว⊑									1.59
134F∠ 134M1									+.30 5.21									1.93
134M2									5.21									2.07
134M3									4.35									1.55
134M4		,							4.18									1.41

Site			(Cost o	fexce	ss (\$)							Yie	ld (t/h	a)			
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							789									7.1		
101MD	73	45	171	284	344	1480	1190			16.0	18.0	9.7	18.9	29.1	19.0	18.8		
101RG	40	49	861 746	1102	1016	1065	789			25.0	20.0	10.5	12.6	12.9	36.6	11.1		
10113 102CB	291	155	740	1192	1210	239	1713	1620		25.0	25.0	10.5	25.5	1.1	6.5	6.0	10.7	
102FL						200	1710	1020	315						0.0	0.0	10.7	0.0
102M2						1278	1812								8.5	6.9		
102M2								730	327								24.3	0.3
102M3						239	639	587	156						9.1	21.4	12.7	0.7
102MI	00	~	70						197	00.0	00 5	00.0	0.0					0.5
103CN	30	6	110	115						38.0	33.5	23.9	3.8 18.8					
103ES	58	7	113	115						37.0	25.2	5.5	10.0					
103MD	79	35	165	159						19.0	39.3	29.3	10.0					
103RG	95	64	198	191						35.5	34.6	23.4	21.0					
103TS	158	73	331	319						35.7	35.0	28.6	29.0					
104FS						442	155	01	70						32.2	32.2	00.0	1 0
104FS 104H5						3041	724	81	78						11 5	26.3	26.9	1.0
104H5						0041	124	660	563						11.5	20.0	29.6	1.8
104MS						1120	349		000						22.3	36.6	_0.0	
104MS								199	179								4.6	1.7
104RG							36									40.8		
104RG	000	000	200	600	400			13	21	00.4	00 4	00.0	10 0	10 5			19.2	3.1
	230	332	328	000 1412	432					22.4 17 /	22.4	23.6	18.0 13.7	19.5 14 4				
105RG	309	452	439	940	1094					15.0	20.0 33 0	22.9	24.9	21.2				
105TS	1830	2684	2627	5545	5577					15.0	23.6	19.3	16.8	15.8				
106CM	264	118		******						37.3	37.3							
106CR	34	17								24.8	37.3							
106MD	102	50								24.8	37.3							
106RG	102	192								24.8	37.3							
107CB	373	102	332	313	161					24.0	57.0	32.1	176	14 1				
107FL	53	22	102	87	37					37.5	24.8	30.0	41.8	25.5				
107MD	237	101	445	379	164					18.6	37.5	29.3	17.2	20.0				
107RE	81	35	152	130	54					25.0	25.0	24.5	22.4	17.8				
107RG	266	110	508	434	179					37.5	50.0	33.5	36.6	32.0				
1071S	77	1/6	1103	982	398					20.5	20.5	18.5	28.4	22.0				
1081VID		140	204	219					143	20.5	20.5	20.5	20.5					0.0
109FA									29									0.2
109RG							893	149	28							21.1	6.8	0.0
109ZC							887	150	28							17.4		0.0
110AR	533	911	1069	1714	1499	712	2981	<u> </u>		25.0	25.0	26.3	20.0	22.1	26.1	15.8	7 1	15.0
110AR	85	111						628	32	5.0	16.2						7.1	15.3
110BC	05	144	349	629	627	411	1255			5.0	10.2	20.0	214	25.0	22.5	50		
110BC			0.0	020	0			462	162			_0.0		_0.0		0.0	9.2	4.3
110CM	175	291	195	96	476	338	892			11.7	21.7	15.0	7.3	20.0	8.3	6.7		
110CM				~~				179	11	4	<u> </u>		40 ·				10.0	1.6
110DC	53	90	/8	39	156	0	0		~	15.0	20.0	15.0	12.4	ا د		11 0	E 4	0.0
111HG	4 2	40 77	3 50	บ ว1	14 20	ט 12	2	/ 20	0	15.U 4 7	12.4 12 R	23.U 22 ∩	13.4 17 つ	ა.4 1 Բ		11.0 22.7	5.I	0.0
112CR	0	11	818	740	00	10	۲	20	0	7./	12.0	18.0	24.0	1.0		<u> </u>		0.0
112RG			133	72								30.1	11.1					
112TS			277	120								9.5	16.6		_	_		
113MD	477	316	154	278	119	8077	3843	902	314	22.5	4.0	7.7	23.2	14.8	29.6	33.4	4	5.0
113KG	393	360	31/	3/6	2//	13145	5692	1941	221	37.5	31.5	30.8	23.2	29.7	44.6	33.4	4./	6.3
114IVIO 114RG	124 124	60 39	504	538						37.8 31.5	01.0 25.2	∠⊎.0 35 3	27.0 24 0					
115RG	38	27	504	000						20.7	41.4	55.5	LT.U	.			1	
115RG			25									3.0						
116FS	11	50	135	150	/1					20.5	17.3	18.5	15.6	20.5				
116MS	39	290	490	567	261					15.5	12.2	13.6	2.7	1/.3				
	/1	/07	667	10U /81	100 487					26.3	20 A	25 5	∠.3 10-1	20.1 28.7				
11675	81	258	362	400	221					26.3	18 1	21.6	18.8	23.1				
117RG	23	9	16	61	•					16.6	35.8	36.0	34.2					
117TS	172	77	102	1453						12.6	11.8	14.3	19.1					
118CA				32									29.2					
118CR	Ĭ			/0 /0									12.2					
				4∠ ⊿1									13.5					
118RG				45									26.4					
	L																	

044				Cost o	fexce	ss (\$)							Yie	ld (t/h	a)		h	
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				274									9.2					
118TS				71									33.6					
119CR									138									8.9
119MB					160	105			19					00.4	10.0			4.6
1191VIE 1101/1E					109	165	315	176	37					22.4	13.0	20.4	1/ 0	101
119MF					262	279	515	170	57					27.8	8.5	20.4	14.5	13.4
119MF							464	277	56							19.1	14.9	13.1
119RG					540	701								22.0	18.5			
119RG							1320	742	130							25.4	12.2	27.2
119TS					258	359								31.0	13.0			
120CR					959	1659	1/2/	957	100					8.1	21.8	27.0	110	25.2
1200R							1434	007	190							37.0	14.0	13.3
120TA					1160	1206								17.6	15.4			10.0
120TA							1719	1070	185							38.5	12.6	20.0
120TC					749	836								25.9	13.3			
120TC					170		999	586	130					00 0		39.2	12.6	23.4
12115				60	170	52	67	297	52				53	23.0	10	170	10.5	121
1220A				103	116	60	86	191	536				6.1	3.2	17.4	17.0	36.0	7.8
122MS				69	87	77	99	387	151				4.0	10.8	15.7	51.9	6.0	8.9
122RG				477	574	210	474	541	268				2.9	4.6	5.1	28.7	6.9	3.6
122TS				260	333	298	390	238	402				7.8	5.2	11.0	19.3	4.8	5.0
123AR					405	= 1 0	150	378	3							21.1	10.8	0.0
123CS					465	512	314	662	5					18.0	10.4	16.4	5.9	0.0
123RG					905 780	738	1872	1001	10					20.3	28.8 13.4	28.8 31.5	2.4 13.2	0.0
124CS					35	700	702	1001	10					15.6	10.4	01.0	10.2	0.0
124CS						110	125								11.6	32.0		
124ME					28									11.3				
124ME					*****	195	39	000							3.8	21.0	100	
125CM						362	493	209							23.5	20.4 53.1	18.8	
125GL						226	274	159							59.4	56.2	9.8	
125GR						347	395	250							28.3	32.5	9.8	0.0
125MH						272	234	185							16.5	21.4	5.9	
125MP						272	282	216							13.4	12.5	5.9	
1250H						208	1/5	440							1/./	14.0	14.0	
12510					205	2080	1703	1358						20	/.8 1/5	23.2	14.9	
126CA				*****	200	172	377	520						2.0	29.2	24.7	16.1	
127AR						86	13	291	171							19.4	14.6	4.5
127CA						43	7	142	77						32.2	32.9	21.0	12.6
12/CR						43	/	160	85						14.8	11.3	8.1	9.0
127FL 127MF						128	22	319	256						13.0	13.0	24.5	20.1
127RG						174	30	619	345						21.8	25.6	7.2	6.7
128AR							100	24									6.0	
128CR							1147	53								35.9	25.0	
128GR							760 504	44 29								34.3	22.2	
129CS							504	25	109							0.1.0		0.9
129FL							109	63	73							45.3	20.8	2.9
129SO							1110	523	110						10000000000000000000000000000000000000	21.1	9.1	0.9
1305K					*****	*****	1299	אט דד	77							36.7	∠5.6 ∕/ 0	20
131MF								11	46								7.3	1.0
131RG							1140									30.0		
131RG							-	336	379							-	4.3	1.9
131SS								182	180								25.2	1.2
131YG								190	FC								6.3	0.0
13201								303	30 40								0.2	0.0
132CP								115	16								14.2	0.0
132CR								255	42								6.9	1.5
132MB								. = .	/5									0.0
132MS								154	25								18.6	11.0
132KG				******	******			2/2	46 44							000000000000000000000000000000000000000	∠ა.ठ 11 հ	3.4 0 N
133MS								191	45								18.5	0.0
134F1									70									14.0
134F2									63									19.9
134M1									326									2.15
1341VI∠ 134M3									167									1.55
134M4									414									5.44

And 2003 2004 2005 2004 2005 2004 2005 2004 2005 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 2007 2008 101 11 2007 2008 101	Cito			Nu	mber	of irri	gation	S						Days b	pelow	refill			
1010CS 1 12 24 22 22 22 23 230 233 160 226 220 233 160 220 233 160 220 233 160 230 220 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 233 160 230 231 241 165 66 56 56 56 241 165 166 66 56 56 240 211 240 211 240 211 240 211 240 211 240 212 241 240 212 241 240 212 241 240 212 240 212 240 210 240 210 240 210 240 210 240 210 240 210 240 210 240 210 240 210	Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101MO 19 12 24 22 23 23 160 220 23 160 220 23 160 220 23 160 220 23 160 220 23 160 220 23 160 220 230 233 160 220 230 233 160 220 230 233 160 220 161 17 240 17 240 21 208 171 208 171 240	101CS							29									227		
101RG 19 13 24 22 21 25 230 230 230 230 233 160 220 223 220 230 230 233 160 220 223 220 230 230 233 160 220 223 220 230 </td <td>101MD</td> <td>19</td> <td>12</td> <td>24</td> <td>22</td> <td>20</td> <td>22</td> <td>28</td> <td></td> <td></td> <td>220</td> <td>228</td> <td>230</td> <td>233</td> <td>160</td> <td>228</td> <td>227</td> <td></td> <td></td>	101MD	19	12	24	22	20	22	28			220	228	230	233	160	228	227		
101TS 19 13 24 22 21 24 249 229 230 231 162 227 76 102MC 41 85 106 66 233 162 241 163 163 241 163 163 243 211 206 171 244 241 240 212 206 171 240 212 206 171 240 212 206 171 240 221 208 171 240 229 236 227 241 240 212 206 171 240 212 240 212 240 212 240 212 240 212 240 212 240 212 240 212 240 212 240 210 240 210 240 210 240 210 240 210 240 210 240 210 231 241 240 210 231 241 240 210 231 241 240 210 231 241 241 240 <td>101RG</td> <td>19</td> <td>13</td> <td>24</td> <td>22</td> <td>21</td> <td>25</td> <td>29</td> <td></td> <td></td> <td>220</td> <td>230</td> <td>230</td> <td>233</td> <td>160</td> <td>220</td> <td>224</td> <td></td> <td></td>	101RG	19	13	24	22	21	25	29			220	230	230	233	160	220	224		
102AC 41 85 65 242 163 242 163 241 102AC 58 138 126 65 240 211 208 171 241 241 181 233 102AC 58 138 126 65 240 211 208 171 241 241 242 163 181 233 103AC 48 44 52 51 240 205 208 171 242 223 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 242 231 241 241 241 241 241 241 241 241 241 242 231 242 231 242 231 242 241 241 241 241 241 241 241 241 241 241 241 241 241 241 241<	101TS	19	13	24	22	21	24	29	1.00		221	229	230	233	162	223	227	100	
102hc 102M2 41 85 50 102 242 163 241 233 102M3 58 138 112 54 233 181 134 233 102M3 52 51 77 240 211 208 171 235 103FG 48 47 52 51 240 212 208 171 235 103FG 48 47 52 51 240 205 208 171 231 240 103FG 48 47 52 51 240 205 208 171 232 231 240 231 240 231 229 246 231 229 246 231 229 246 231 229 246 231 229 246 231 229 246 231 229 246 231 229 246 231 229 246 231 229 231 229	102CR						51	135	100							238	129	163	044
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	102FL						11	85		58						242	162		241
102001 58 138 112 54 237 181 174 234 1030N 48 43 52 51 - 240 211 208 171 - 235 103RN 48 43 52 51 - 240 212 208 171 - 231 246 103RS 48 47 52 51 - 240 205 208 171 - - 231 243 246 204 205 208 171 - - 229 231 246 240 206 208 171 - - 229 246 - 241 240 206 107 - 229 246 - 108 206 207 244 20 - 185 206 207 208 197 - 221 246 104RS - 42 50 70 64 - 198 206 207 208 191 - - 121 221	102M2						41	05	106	65						242	105	181	233
102MI 4 4 52 51 240 211 208 171 235 235 1030N 48 43 52 51 240 211 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 171 208 208 171 208 201 <td>102M3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>58</td> <td>138</td> <td>112</td> <td>54</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>237</td> <td>181</td> <td>174</td> <td>241</td>	102M3						58	138	112	54						237	181	174	241
103.CM 103.CN	102MI									67									235
103CN 48 43 52 51 240 212 208 171 103ING 48 47 52 51 240 212 208 171 103ING 48 47 52 51 240 213 240 205 208 171 103ING 48 47 52 51 240 213 240 205 208 171 104FS 44 47 52 51 240 205 208 171 232 231 240 212 240 213 227 244 240 216 229 231 240 212 240 216 231 229 241 219 231 240 214 219 231 241 214 219 231 241 214 219 231 241 214 219 214 210 117 221 244 115 207 208 208 108 101 101 101 101 101 101 101 101	103CM	48	44	52	51						240	211	208	171					
103HS 48 43 52 51 240 212 240 212 240 212 240 205 208 171 103HS 48 47 52 51 240 205 208 171 222 231 241 240 205 208 171 222 231 241 240 205 208 171 222 231 241 240 205 208 171 222 231 241 240 252 240 224 240 227 244 241 240 251 229 226 246 227 244 241 240 251 229 226 246 221 246 221 246 221 246 221 246 241 </td <td>103CN</td> <td></td> <td></td> <td>52</td> <td>51</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>208</td> <td>171</td> <td></td> <td></td> <td></td> <td></td> <td></td>	103CN			52	51								208	171					
	103FS	48	43	50	F 1						240	212	000	474					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1031VID	40 ∕18	47	52 52	51						240	205	200	171					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	103TS	48	47	52	51						240	204	200	171					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	104FS		.,		01		42	52			2.10	200	200	.,		232	231		
104H5	104FS								73	64								231	246
104HS	104H5						42	49								229	236		
104MS	104H5								69	103								227	244
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	104MS						42	50	70	~ 4						231	229	000	040
1000000 31 28 30 24 20 196 206 207 208 199 221 246 105FRC 31 28 30 24 20 195 206 208 208 197 197 197 195 206 207 208 191<	104IVIS							10	70	64							001	229	246
105HD 31 28 30 24 20 10 10 195 206 207 208 199 21 10 105MD 31 28 28 24 24 24 24 196 206 208 197 195 206 208 197 197 10 197 10 195 107 195 107 195 107 195 107 195 107 195 107 195 107 195 107 10 195 107 107 100 192 21 166 167 166 167 166 167 166 167 100 107 107 107 107 107 107 25 24 34 29 25 256 200 214 221 199 197 107 107 107 25 24 34 29 25 256 200 214 221 198 199 107 107 107 107 25 24 32 29 256	104RG							40	78	64							201	221	246
105MC 31 28 28 24 24 20 195 207 208 197 105TS 31 27 30 24 24 195 177 207 208 192 5 5 5 5 77 208 192 5 256 190 214 220 199 5 208 193 18 19 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 <t< td=""><td>105FL</td><td>31</td><td>28</td><td>30</td><td>24</td><td>20</td><td></td><td></td><td></td><td></td><td>195</td><td>206</td><td>207</td><td>208</td><td>199</td><td></td><td></td><td></td><td></td></t<>	105FL	31	28	30	24	20					195	206	207	208	199				
105RG 31 28 28 24 44 195 207 209 208 191 105TS 31 27 30 24 24 194 163 106CM 18 21 166 167 194 163 106K0 18 21 166 167 166 167 107K1 25 24 34 29 25 256 199 214 220 199 107K1 25 24 34 29 25 256 199 214 220 199 107K1 25 24 34 29 25 256 199 214 220 199 107K5 25 24 34 29 25 256 199 214 220 199 107K5 35 29 25 256 200 214 221 198 107K6 25 4 34 29 25 266 200 214 221 198 107K7 35 29 25 226 200 166 190 249 227 109K6 19 7 13 10<	105MD	31	28	29	24	20					195	206	208	208	197				
105TS 31 27 30 24 24 195 177 207 208 192 106CM 18 21 - - 194 163 -	105RG	31	28	28	24	24					195	207	209	208	191				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	105TS	31	27	30	24	24					195	177	207	208	192				
100 168 21 100 167 168 167 106R0 19 22 207 216 207 215 207 215 200 197 200 197 200 197 200 197 200 192 199 197 107MD 25 24 34 29 25 256 199 214 221 199 199 197 197 197 207 216 200 214 221 198 197 197 197 256 200 214 221 199 197 197 210 224 33 29 25 256 199 214 221 198 221 198 197 197 111 11 14 14 111 11 14 14 21 198 207 207 206 228 222 109 210 286 220 206 228 222 109 251 220 206 228 222 109 109 210 232 206	106CM	21	16								194	163							
106FG 108 18 21 207 215 207 215 107CH 34 29 25 266 199 214 220 197 107FL 25 24 34 29 25 256 199 214 220 197 107FL 25 24 34 29 25 256 199 214 221 199 107FL 25 24 34 29 25 256 199 214 221 198 199 107FG 25 24 34 29 25 261 199 214 221 198 199 190 11 14 14 21 198 200 162 200 162 200 202 198 88 87 210 228 222 109 222 100 228 222 109 228 222 109 220 206 166 190 248 222 109 201 224 100 100 100 100 100	1060n	18	21								166	167							
106TS 18 21 21 21 220 197 107CH 25 24 34 29 25 266 190 214 220 197 5 5 199 214 220 197 5 5 24 34 29 25 256 199 214 221 198 5 5 5 226 199 214 221 198 5 5 5 226 199 214 221 198 5 5 5 226 199 214 221 198 5 5 5 5 5 5 7 215 220 196 7 </td <td>106RG</td> <td>19</td> <td>22</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>207</td> <td>215</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	106RG	19	22								207	215							
107CR 25 24 34 29 25 26 200 214 220 197 107MD 25 24 34 29 25 266 199 214 221 199 107ME 25 24 34 29 25 266 199 214 221 198 107RE 25 24 34 29 25 266 199 214 221 198 107RE 25 24 34 29 25 256 199 214 221 198 107RE 25 24 34 29 25 266 200 214 221 198 109RA 11 11 14 14 - 113 110 212 207 222 206 228 222 206 228 222 206 228 222 206 228 222 206 228 222 202 249 222 202 249 222 210 228 222 210 </td <td>106TS</td> <td>18</td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>166</td> <td>167</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	106TS	18	21								166	167							
107HD 25 24 34 29 25 266 200 214 220 199 107HG 25 24 33 29 25 256 199 214 220 199 107HG 25 24 34 29 25 256 199 214 220 199 107HG 25 24 34 29 25 256 199 214 220 199 107HG 35 29 25 113 110 212 207 222 201 220	107CR			34	29	25							214	220	197				
10/7MC 2:5 24 34 29 25 256 199 214 220 199 107FG 2:5 24 34 29 25 256 200 214 221 198 198 107FG 2:5 24 34 29 25 256 200 214 221 198 198 109RA 255 24 34 29 25 215 200 196 15 222 198 109RA 11 11 14 14 113 110 212 207 222 220 222 201 228 222 2010 228 222 2010 228 222 2010 228 222 2010 228 222 2010 249 222 2010 249 222 2010 248 222 202 249 2010 248 222 202 249 2010 202 249 202 249 202 249 202 249 202 221 220 22	107FL	25	24	34	29	25					256	200	214	221	199				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		25	24	34	29	25					256	199	214	220	199				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	107RG	25	24 24	34	29	25					256	200	214	221	198				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	107TS	25	24	35	29	25					200	200	215	220	196				
109CR 89 89 89 87 222 221 222 222 221 222 222 221 222 221 222 221 222 221 222 221 224 222 221 224 224 224 224 224 224 224 224 225 221 224 222 241 199 239 210 123 174 190 221 224 222 221 111 111 111 111 111 111 111	108MD	11	11	14	14						113	110	212	207					
109FA 109FG	109CR									87									222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109FA									87									222
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	109RG							89	89	87							210	228	222
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10920 1104B	19	27	21	24	24	21	<u> </u>	00	0/	256	232	204	164	190	249	200	220	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110AR	13	21	21	24	24	21	54	73	18	200	202	204	104	130	245	222	195	225
110BC 17 23 24 22 34 202 34 202 249 110EC 19 27 18 14 24 24 33 72 15 256 233 206 178 190 251 224 199 239 110CM 19 27 18 14 24 33 72 15 256 233 206 178 190 251 224 199 239 110CM 19 27 18 14 24 29 202 171 236 247 248 232 221 199 239 111RG 39 51 75 55 55 43 31 46 29 193 165 218 228 193 272 243 227 220 112RG 43 44 44 73 122 102 99 100 98 70 228 225 211 165 207 203 192 215 207	110BC	19	27								262	238							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	110BC			17	23	24	22	34					206	166	190	248	222		
110CM 19 27 18 14 24 24 33 254 232 208 179 190 251 224 199 239 110DC 19 27 18 14 24 256 233 206 178 190 251 224 199 239 111RG 39 51 75 55 55 43 37 47 29 202 171 236 247 204 273 248 232 221 111TS 41 51 77 54 57 43 41 46 29 103 165 218 228 193 272 243 227 220 112CR 43 44 44 73 122 102 99 100 98 70 228 221 174 182 152 182 201 113RG 100 42 74 150 125 125 128 84 226 223 101 123 174 182	110BC								69	19								202	249
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110CM	19	27	18	14	24	24	33			254	232	208	179	190	251	224		
1111RG 39 51 75 55 54 3 37 47 29 202 171 236 236 247 204 273 248 232 221 111TRG 41 51 77 54 57 43 41 46 29 193 165 218 228 193 272 243 227 220 112CR 49 46 223 212 212 112 111 165 207 203 192 215 207 103 192 215 207 100 192 215 207 113RG 100 44 44 226 223 210 123 174 182 152 182 208 113RG 100 42 74 150 125 125 125 128 84 226 223 210 123 174 182 152 188 236 236 196 196 114 15 168 166 166 166 166 166 <	110CM	10	07	10	11	04			72	15	050	000	206	170	100			199	239
111TIS 41 51 77 54 57 43 41 46 29 193 165 218 228 193 272 243 227 220 112CR 49 46 188 188 188 188 223 212 213 227 220 220 223 212 214 226 214 226 214 226 214 226 214 215 207 203 192 215 207 131 192 215 207 103 192 215 207 113 114 112 122 102 99 100 98 70 228 225 211 165 207 203 192 215 207 113RG 100 42 74 150 125 125 128 84 226 223 210 123 174 182 152 188 133 16 196 196 196 196 14 114 115 116 116 116 116	111BG	39	51	75	55	24 55	43	37	47	29	202	171	200	247	204	273	248	232	221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111TS	41	51	77	54	57	43	41	46	29	193	165	218	228	193	272	243	227	220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112CR			49	46	_				-			188	188		,	,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	112RG			43	44								223	212					
113MD 44 44 73 122 102 99 100 98 70 228 225 211 165 207 203 192 215 207 113RG 100 42 74 150 125 125 128 84 226 223 210 123 174 182 152 182 208 114RG 53 46 49 48 236 238 196 196 197 1138 152 182 208 115RG 36 30 213 225 210 133 210 114 1158 210 114 1158 1168 1168 1168 1168 1168 1168 1132 116 1168 1168 1132 116 1168 1168 1168 1132 116 116 118 116	112TS			42	44	100		100	~~~~				226	214	~~~			<u></u>	
113NG 100 42 74 130 125 125 125 125 126 64 226 223 210 123 174 162 132 162 206 114MS 53 46 49 48 236 238 196 196 114 162 132 162 206 238 196 196 114 162 132 162 206 238 196 196 114 162 132 162 206 236 236 238 196 196 114 167 30 30 30 213 225 210 133 168 235 236 237 210 133 210 116 132 30 31 35 210 133 160 132 160 132 160 116 132 133 116 133 116 132 162 218 216 132 162 210 123 14 133 166 14 166 164 162 162 162	113MD	44	44	73	122	102	105	100	100	70	228	225	211	165	207	203	192	215	207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114MS	53	42	4	48	125	125	120	120	04	220	238	196	123	1/4	102	102	102	200
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	114RG	52	44	48	48						235	236	197	197					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	115RG	36	30								213	225							
116FS 39 37 39 34 33 259 214 222 220 133 116MS 42 55 39 34 33 257 203 222 216 132 116NC 31 35 218 216 218 216 116RG 42 60 39 34 45 260 194 224 222 218 116TS 42 54 39 34 43 254 202 234 220 199 117FG 26 30 23 33 205 220 193 251 117TS 26 30 23 33 203 220 196 248 118CA 14 175 173 173 174 175 118RG 15 1/3 1/5 1/5 1/5 1/5 118RG 15 1/5 1/5 1/5 1/5 118RG 14 175 175 175	115RG			33									210						
116NC 42 55 39 34 33 257 203 222 216 132 116NC 31 35 218 216 218 216 116NC 42 60 39 34 45 260 194 224 222 218 116NC 42 54 39 34 43 254 202 234 220 199 117NG 26 30 23 33 205 220 193 251 117TS 26 30 23 33 203 220 196 248 118CA 14 175 1/3 1 1 1 1 118RG 15 1/3 1 1 1 1 1 1 118RG 15 1/5 1 </td <td>116FS</td> <td>39</td> <td>37</td> <td>39</td> <td>34</td> <td>33</td> <td></td> <td></td> <td></td> <td></td> <td>259</td> <td>214</td> <td>222</td> <td>220</td> <td>133</td> <td></td> <td></td> <td></td> <td></td>	116FS	39	37	39	34	33					259	214	222	220	133				
116RG 42 60 39 34 45 260 194 224 222 218 116RG 42 54 39 34 43 254 202 234 220 199 117RG 26 30 23 33 205 220 193 251 117TS 26 30 23 33 203 220 196 248 118CA 14 175 1/3 118 1/3 118 1/5 118RG 15 1/5 1/5 1/5 1/5 1/5 118RG 14 175 1/5 1/5 1/5 1/5		42	55	39	34 21	33 25					20/	203	222	∠10 219	132				
116TS 42 54 39 34 43 116TS 42 54 39 34 43 117TG 26 30 23 33 117TS 26 30 23 33 118CR 14 175 118RS 15 1/3 118RG 15 1/5 118RG 14 175	116RG	42	60	39	34	45					260	194	224	222	218				
117RG 26 30 23 33 205 220 193 251 117TS 26 30 23 33 203 220 196 248 118CA 14 1/5 1/3 118FS 15 1/5 1/5 118MS 15 1/5 1/5 118RG 14 175	116TS	42	54	39	34	43					254	202	234	220	199				
117TS 26 30 23 33 203 220 196 248 118CA 14 1/5 118CR 15 1/3 118FS 15 1/5 118MS 15 1/5 118MS 15 1/5 118RG 14 175	117RG	26	30	23	33	-					205	220	193	251	-				
118CA 14 175 118CR 15 1/3 118FS 15 1/5 118MS 15 1/5 118RG 14 175	117TS	26	30	23	33						203	220	196	248					
118Ch 10 173 118FS 15 1/5 118MS 15 1/5 118RG 14 175	118CA				14									1/5					
118MS 15 1/5 118RG 14 175					15 15									1/3					
118RG 14 175	118MS				15									1/5					
	118RG				14									175					

Sito			Nu	ımber	of irri	gation	S						Days b	pelow	refill			
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				13									176					
11815 119CB				13					44				1/4					211
119MB									44									212
119ME					25	30								210	238			
119ME						~~~	71	69	44							191	206	211
119MF					25	30	70	60	4.4					210	238	102	207	011
119101F					32	32	70	69	44					213	238	193	207	211
119RG					02	02	73	70	45					210	200	191	205	211
119TS					26	30	_	-	-					211	238	-		
120CR					33	35			40					204	222	470	400	
120CR							73	70	43							179	199	207
120101B					29	28			43					204	232			213
120TA					20	20	72	69	43					201	202	186	199	209
120TC					29	28								209	232			
120TC					04		72	69	43					001		186	200	209
12115 122CA				35	24	42	45	72	34				190	134	240	221	223	212
122CR				35	30	35	45	70	34				190	134	247	223	221	211
122MS				35	32	45	52	72	34				190	166	237	214	223	212
122RG				44	43	42	54	72	34				183	153	240	214	222	211
122 IS				44	43	44	54	/2	34				197	163	238	216	222	211
123AR 123CS					76	96	89 89	90	41					163	227	217	196	224
123RG					76	96	90	90	41					166	227	193	194	224
123TS					76	96	88	89	41					211	231	214	206	241
124CS					15	40								186	070	000		
124CS					12	19	64							101	273	230		
124ME					12	11	66							101	273	231		
125CB		*****	*****	******		27	53	45							228	229	238	
125CM						21	53	44							236	230	219	
125GL						21	52	41							236	225	245	
125GH 125MH						21 21	53 49	43							230	200 221	242	
125MP						21	52	46							236	223	217	
125OH						27	52								228	232		
125TO						27	53	41						400	228	231	250	
12515				***********************	31	27	49 59	43				*****		196	228	223	249	
127AR						43	61	56	25						252	237	223	212
127CA						43	61	56	25						252	237	223	212
127CR						43	61	56	25						252	237	223	212
127FL						64	61	56 57	25						237	237	222	212
12710E						43	61	55	25						252	237	220	212
128AR							100	63								232	229	
128CR							116	64								189	218	
128GR							67	62								227	232	
120GS							07	03	104							221	232	213
129FL							107	86	104							222	225	213
129SO							102	85	104							213	227	213
130SR							41	35	00							237	258	010
13105 131MF								00	96								229	213
131RG							37		00							229		
131RG								70	96								231	213
131SS								67	96								230	213
131YG								64 78	20								228	210
132CJ								10	39								1	219
132CP								79	39								210	219
132CH								/8	39								210	219
132MB								77	39								214	219
1321VIO 132RG								(/	39								214	219
133CS								33	10					W			216	244
133MS								33	10								214	244
134F1					_				14					_				24/
134F2 134M1									13									240 248
134M2									14									248
134M3									13									250
134M4									14									248

Cito			C	ost of	water	(\$/ML)				Cro	p prod	uction	perm	negalit	re (t/N	1L)	
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							261									0.97		
101MD	99	102	102	104	104	877	263			2.90	4.34	1.43	3.00	4.70	3.92	2.59		
101RG	102	124	102	102	102	775	261			4.54	4.43	2.74	2.00	2.00	6.55	1.52		
101TS	99	102	102	104	104	816	261			4.54	5.61	2.74	4.00	0.17	2.32	2.04		
102CR						61	44	44							1.63	0.40	0.85	
102FL									50									0.00
102M2						42	44								0.97	0.52		
102M2								44	50								3.06	0.08
102M3						42	44	44	50						2.42	2.06	1.56	0.21
102MI									50									0.11
103CM	92	95	97	102						5.16	5.02	2.86	0.44					
103CN			97	102								0.66	2.22					
103FS	92	95	o	400						5.02	3.87	0 = 1						
103MD	92	95	97	102						2.58	5.49	3.51	1.18					
103RG	92	95	97	102						4.82	4.84	2.80	2.48					
10315	92	95	97	102		050	040			4.85	4.89	3.43	3.43		4.04	4.07		
10450						200	249	150	115						4.94	4.07	4 57	0 20
104F3						2/0	254	150	115						1 77	3 15	4.57	0.30
10415						249	234	150	115						1.77	5.45	5.03	0 37
104115						274	247	150	115						3 12	1 55	5.05	0.57
104MS						214	271	150	115						0.42	4.00	0 78	0 48
104BG							250	100								5 17	0.70	0.10
104RG							200	152	115							0.17	3.38	0.89
105FL	99	102	102	104	104					2.04	1.72	1.99	1.07	1.64			2.00	2.00
105MD	99	102	102	104	104					1.58	1.58	1.52	0.81	1.09				
105RG	99	102	102	104	104					1.37	2.54	1.98	1.48	1.16				
105TS	99	102	102	104	104					1.37	1.86	1.63	1.00	0.92				
106CM	99	102								3.26	4.27							
106CR	99	102								5.05	6.51							
106MD	99	102								5.05	6.51							
106RG	99	102								4.79	6.22							
106TS	99	102								5.05	6.46							
107CR			102	104	104							3.60	1.94	1.80				
10/FL	99	102	102	104	104					5.48	3.44	3.31	4.60	3.25				
	99	102	102	104	104					2.72	5.20	3.25	1.89	2.55				
107RE	99	102	102	104	99					3.65	3.47	2.78	2.47	2.27				
107RG	99	102	102	104	104					5.48	6.93	3.69	4.03	4.08				
10713	10	10	102	104	104					2 01	201	2.00	0.12	2.00				
10000D	10	12	13	13					90	3.01	3.01	2.10	2.10					0.01
109FA									90									0.01
109BG							2024	1987	89							2 81	1 34	0.00
1097C							2038	1997	90							2.34	1.01	0.00
110AR	111	115	118	122	102	312	172	1007		2.81	2.29	2.26	1.50	1.61	3.02	1.01		0.00
110AR					102	012	., -	147	109	2.01	2.20	2.20	1.00		0.02		0.82	6.90
110BC	111	116								0.84	2.14							
110BC			118	122	102	298	172					1.93	1.71	1.82	2.44	0.32		
110BC								106	109								1.10	1.94
110CM	111	116	118	122	102	300	174			1.31	1.98	1.59	1.09	1.45	0.91	0.44		
110CM								148	109								1.17	0.89
110DC	111	116	118	122	102					1.69	1.83	1.47	1.84					
111RG	80	81	81	81	81	81	84	84	90	5.38	2.49	5.68	3.19	0.76		4.62	1.38	0.00
111TS	80	81	81	81	81	81	84	84	90	1.55	2.47	3.34	3.53	0.26		8.72		0.00
112CR			13	13					T			1.59	2.20					
112KG			13	13								3.53	1.37					
11215	- 10	4.0	13	13	40	1010	405	057		0.50	0 47	1.10	2.10	0.00	4.00	E 10		1 07
	10	12	13	13	13	1001	485	25/	115	2.53 E 10	0.47	1.33	2.95	2.20	4.69	0.19	0.64	1.07
11/1/19		102	102	104	12	1031	420	230	115	0.10	4.01	4.20	2.09	3.67	0.69	4.37	0.01	1.12
114IVO	99	102	102	104						2.60	2.93	1.07	1.70					
115RG	10	102	102	104						1 94	4.91	2.40	1.07			1	1	
115BG	10	12	13							1.34	7.61	0.43						
116FS	80	81	81	81	81					2.91	2.04	1.58	1.23	2.91				
116MS	80	81	81	81	81					2.03	1.13	1.18	0.21	2.45				
116NC		-	-	11	11						-	_	0.18	1.92				
116RG	80	81	81	81	81					3.43	2.27	2.23	1.51	2.92				
116TS	80	81	81	81	81					3.41	1.61	1.84	1.48	2.44				
117RG	99	102	102	100						3.08	6.98	5.51	4.49					
117TS	99	102	102	104						2.35	2.32	2.19	2.54					
118CA				81									3.69					
118CR				81									1.47					
118FS				81									1.59					
118MS				81									1.59					
118RG				81									3.3					

Cito			С	ost of	water	(\$/ML)				Cro	o prod	uction	per n	negalit	tre (t/N	IL)	
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				81									1.23					
118TS				81					115				4.54					1 00
119CR									115									1.92
119ME					81	531			115					3.17	2.02			0.00
119ME					-		191	198	115					-	-	2.78	2.02	4.21
119MF					84	531								3.93	1.25			
119MF					0.1	500	192	197	115					0.50	0.50	2.63	2.03	2.83
110PG					81	502	190	107	115					2.50	2.52	3 38	164	5 74
119TS					81	531	109	197	115					4 36	1 90	5.50	1.04	5.74
120CR					78	459								0.78	2.66			
120CR							188	190	115							4.98	1.94	5.55
120MB						454			115					0.04	0.04			2.93
1201A					81	454	190	199	115					2.01	2.34	5 1 /	1 65	1 20
120TC					81	547	109	100	115					2.93	2.02	5.14	1.05	4.50
120TC					•••	0.17	189	193	115							5.23	1.68	5.13
121 IS					104									3.56				
122CA				102	102	102	109	789	115				0.75	1.77	0.73	2.71	3.48	3.13
122CR				102	102	102	109	563	115				0.86	0.58	3.60	6 76	6.42	1.81
122100 122RG				102	102	102	109	280	115				0.30	0.55	0.93	3.54	1.07	0.83
122TS				102	102	102	109	110	115				1.05	0.73	1.80	2.48	0.85	1.17
123AR							339	379	115							2.77	1.37	0.00
123CS					102	450	337	381	115					2.04	1.35	2.14	0.76	0.00
123RG					102	450	308	377	115					1.02	3.74	6.69	0.30	0.00
12313 124CS					79	450	320	379	115				<i>(</i>	3.63	1.74	3.94	1.07	0.00
124CS						794	235							0.00	6.25	5.10		
124ME					79									3.27				
124ME				****		2824	84								3.65	3.46		
125CB						392	313	125							2.13	3.05	2.04	
125GI						430	307	124							11 22	6.57	1 16	
125GR						430	307	126							5.34	3.80	1.16	
125MH						430	308	124							3.11	2.52	0.63	
125MP						430	306	124							2.53	1.45	0.63	
1250H						392	314	100							2.95	1.69	1 00	
125TS					104	392	296	120						0 40	2 42	2.02	1.92	
126CA				***********************		79	87	84		*****				0.10	5.54	3.75	2.29	
127AR						101	106	775	114							3.96	3.03	1.13
127CA						102	107	777	115						5.97	6.70	4.33	3.16
127CR						102	107	763	115						2.74	2.30	1.63	2.26
1271L						102	100	692	115						2.41	2.64	1.09	1.37
127RG						102	107	777	115						4.03	5.21	1.47	1.68
128AR							349	17									0.93	
128CR							257	15								3.90	3.58	
128GR							343	15								5.05	3.34	
129CS							0+0	10	115							0.00	0.04	0.15
129FL							251	148	115							5.81	3.40	0.47
129SO							251	148	115						<i>,</i>	2.71	1.52	0.15
1305K				******	*****		246	143	115			*****				4.55	3.72	0 38
131MF								1 JZ	115								0.00	0.19
131RG							230									3.30		5.10
131RG								165	115								0.83	0.37
131SS								152	114								4.57	0.23
1324P								154 200	115								1.18	0 20
132CJ								230	115								1.13	0.00
132CP								293	115								2.11	0.00
132CR								297	115								1.05	0.55
132MB								204	115								9 70	0.00
1321VIS								294 297	115								∠./Ծ 3.60	4.11
133CS			•••••••••••••••••••••••••••••••••••••••					107	115								1.19	0.00
133MS								107	115								1.92	0.00
134F1									50									3.35
134F2									50									4.58
134IVII 134M2									50									0.41
134M3									50									0.36
134M4									50									1.3

Sito		Gr	oss r	eturn	per m	egalitr	e (\$/ML	_)			Cos	t of w	aterp	per to	nne o	f fruit	(\$/t)	
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							2911									284		
101MD	2905	4343	2008	5995	9865	8222	4662			39	27	80	39	25	227	107		
101RG	4538	4433	3830	3398	2805	11464	2728			25	31	336	58	57	120	182		
101TS	4538	1121	3283	6393	311	4175	3268			25	21	42	29	679	357	135		
102CR						5546	1282	2546							53	174	82	
102FL									0									
102M2						3308	1825								69	132		
102M2						0000	7010	10/21	2/2							~ ~ ~	23	1021
1021/3						8222	/216	5061	/49						28	34	46	370
102IVI	0007	5070	0000	700					452		01		050					702
	9027	5973	3690	739						20	21	38	259					
10301	10045	0405	834	3427						01	00	167	52					
10355	10045 5010	0000	5007	0500						21	28 10	01	07					
103100	0770	3200	25/1	2009						09 01	19	20	97					
10300	7752	4000	5041	5013						21	22	29	40 24					
10313 104ES	1155	0002	5265	0200		10860	9779			21	22	32	34		54	64		
10413 104ES						10000	9//9	10058	654						54	04	35	120
10415						3361	7593	10050	004						147	77	00	423
10415						5501	1555	12071	1107						147		30	345
104115 104MS						5806	9008	12071	1107	-					84	57	52	545
104MS						5000	5050	2354	1054						04	57	206	266
104RG							6720	2004	1004							51	200	200
104RG							0720	6089	1154							01	48	143
105FI	3258	2752	2983	1819	2632			0000		58	70	58	111	72				
105MD	2534	2522	2275	1217	1309					74	76	77	146	109				
105RG	2185	4060	2970	2361	2089					86	47	59	81	102				
105TS	2185	2973	2439	1593	1472					85	64	71	119	129				
106CM	5210	6838								33	26			****		****		
106CR	8083	10420								21	17							
106MD	8083	10420								21	17							
106RG	7658	9947								23	18							
106TS	8083	10337								21	17							
107CR			5044	3007	2515							31	58	63				
107FL	8771	5502	4962	6905	5198					20	32	33	24	35				
107MD	4350	8319	4550	2835	4077					39	21	34	59	44				
107RE	5847	5546	4036	2959	2608					29	32	39	46	47				
107RG	8771	11092	4433	4431	5606					20	16	30	28	26				
107TS			2499	4842	4064							53	36	40				
108MD	6099	6099	2935	2935						8	8	15	16					
109CR									20									10311
109FA							5000	074	103							704	4 4 9 4	2040
109RG							5626	671	0 0							724	1491	00400
10920	1101		0710	0001	0007	1100	2107		5			~~~~~			100	8/6		28129
110AK	4494	3657	2/12	2681	2087	4188	1719	4447	15001	46	58	60	93	74	109	185	105	10
110AK	1100	2002						1147	15301	150	60						195	18
	1100	3002	0011	2000	0177	10060	CEC			152	02	70	01	CE	100	500		
11000			2311	2000	3177	10969	000	0011	2614			70	01	60	129	203	100	60
110CM	2102	2174	1595	1/01	2034	1260	615	2311	3014	07	67	85	107	80	340	120	100	03
110CM	2105	5174	1303	1421	2004	1209	015	1625	12/0	57	07	05	121	02	549	423	127	127
110DC	2697	2925	1173	2211				1000	1243	76	73	92	75				107	107
111BG	2388	2848	6816	5751	954		7847	1381	0	20	44	19	34	142		24	80	
111TS	870	4438	4013	5642	391		9592	1001	õ	70	44	32	31	415		13	00	
112CR	5,0	. 100	2220	6114	501		2002		0			27	19			10		
112RG			4239	3203								12	31					
112TS			1316	3504								38	20					
113MD	5562	759	1869	6480	4964	12661	14399		2144	15	84	30	14	18	266	99		136
113RG	12442	6455	5364	5700	7744	14730	12144	1578	2247	7	9	9	16	10	180	104	437	102
114MS	8910	6288	2248	3172						26	31	65	70					
114RG	8847	4158	3406	3342						32	40	50	74					
115RG	3306	2527								12	6					h		
115RG			645									59						
116FS	4949	4077	2930	3272	7555					33	48	61	79	33				
116MS	4069	1577	2115	418	4651					47	86	83	465	40				
116NC				451	4228								483	10				
116RG	6343	2956	3793	4031	5552					28	43	44	64	33				
116TS	6143	1930	3862	3949	5375					28	60	53	66	40				
117RG	4933	11160	6618	8982						36	16	20	25					
11/TS	3/56	3/14	3067	3812						48	49	51	45					
118CA				5522									22					
118CH				20//									54.9					
				2030 1002									50.9					
				3333 7506									00.9 01 F					
IIOKG				1090									24.J					

Sito			Gross	returr	n per n	negalit	re (\$/M	L)			Co	stofv	vater p	per tor	nne of	fruit (\$/t)	
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				2576									66					
11815				/533					4000				18			10000000000 1 000000000		70
1190R									4233 2074									141
119ME					4751	4038			2071					34	276			
119ME							5008	5049	9270							78	109	33
119MF					5896	2498								28	447			
119MF					0004	4004	4730	5069	6232					40	010	83	108	49
119RG					3004	4084	6764	0600	10054					43	210	64	124	24
1196G					5229	3417	0704	2022	10234					25	294	04	134	24
120CR					1565	5860								134	182			
120CR							9702	3888	12205							43	109	25
120MB									6149									39
120TA					4013	4211	0040	0004	7450					54	206	40	107	00
1201A					EOEO	2624	9249	2804	7452					27	201	42	127	26
1201C					5656	3034	9408	2849	10468					37	204	41	128	27
1211S					4073		0.00	2010	10100					33			120	
122CA				1252	2362	1056	4207	4039	5907				148	63	152	44	230	40
122CR				2402	1715	10248		14324	4254				128	190	31		89	69
122MS				1255	3206	3098	13187	537	4533				196	62	44	18	743	59
122RG				/15	149	1562	/964	1949	1620				328	202	119	33	238	152
12213 1234B				2209	1440	504	8573	3977	2401				106	155	02	123	284	107
123CS					4488	2699	6167	1703	0					55	341	162	518	
123RG					1428	5790	12579	435	Õ					109	123	48	1292	
123TS					2524	3300	7887	2677	0					49	265	86	234	
124CS					7990									23				
124CS					7500	11249	11977								129	49		
					7530	0124	5901							26	770	20		
124IVIE						6390	6407	6124							185	103	62	
125CM						13309	14048	5985							97	49	63	
125GL						17958	11823	1969							39	47	110	
125GR						8552	6838	1969							81	81	110	
125MH						5291	4530	1428							139	123	198	
125MP						4297	2616	1428							1/1	212	198	
125UH						2587	5068	1028							304	107	68	
125TS					759	4599	4718	4028						265	163	117	68	
126CA					100	7917	6299	4230						200	17	28	44	
127AR							10693	8070	3013							30	262	112
127CA						8653	10382	5019	5974						19	18	180	36
127CR						7819	5530	4337	5311						42	46	477	56
127FL						10359	28262	8937	21653						30	13	155	20
127NL						6785	14078	2356	3290						29	23	536	76
128AR						0.00		2847	0_00								28	
128CR							10918	12024								68	7	
128GR							12167	7265								70	7	
128GS							12167	7265	005							70	7	057
12905 129FI							12780	8165	295							ړړ	<u>⊿</u> 7	05/ 271
12950							4881	2427	291							93	105	866
130SR							9097	7444	1							56	41	
131CS								2471	769								187	333
131ME									285									674
131RG							3633	1 400	4							76	000	
131KG								1492	4//								203	349 540
13135 131VG								0224 2115	390								142	540
132AR								4034	720				,				254	457
132CJ									0									
132CP								6325	0								145	
132CH								3302	1193								296	241
132MB								7007	0								100	20
1321015								1231	0204 2303									32 105
13305								2135	2003								96	100
133MS								4121	Ű								63	
134F1	İ								11914									12
134F2									16262									9
134M1									/25									98
13411/2									0 625									114
134M4									2282									31.1
	6									<u>د</u>								• •

Sito	Gross return per \$ water input											Арр	licatio	n effic	iency	(%)		
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							11									61		
101MD	26	38	18	51	84	9	17			93	94	86	76	70	79	63		
101RG	39	32	20	30	24	15	10			94	92	86 07	70	77	76	61		
10115 102CB	40	10	29	54	3	5 64	12	36		93	96	8/	/8	//	79	57	52	
102011						04	10	50	0						02	57	52	81
102M2						50	27		Ū						62	66		01
102M2								151	3								78	83
102M3						120	102	71	10						76	77	74	83
102MI									6									83
103CM	88	56	34	6						90	98	82	84					
103UN	07	00	8	30						00	00	82	84					
103F3 103MD	97 52	80	46	23						89	99 95	82	84					
103RG	86	46	32	51						89	93	82	84					
103TS	76	63	48	54						89	95	82	84					
104FS						41	37								71	91		
104FS						10		62	5						- 4	~ ^ /	90	80
104H5						13	29	75	0						/1	94	00	05
104H5 104MS						20	35	75	9						70	92	09	00
104MS						20	00	15	8						70	02	90	80
104RG							26									93		
104RG								37	9								94	80
105FL	28	23	26	15	22					70	65	60	43	49				
105IVID	10	21	20	20	10					70	64 64	60 50	41	43				
105TS	19	25	20	13	12					70	63	60	42	43				
106CM	48	62	,							65	80							
106CR	75	94								84	93							
106MD	75	94								84	93							
106RG	71	90								85	94							
10015 107CB	/5	93	46	27	22					84	93	76	78	87	000000000000 0 00000000		00000000000000000000000000000000000000	
107FI	82	50	45	62	46					82	93	70	79	89				
107MD	41	76	42	25	36					82	93	74	79	89				
107RE	55	50	37	26	24					82	93	74	79	89				
107RG	82	101	40	40	52					82	93	74	79	89				
10/IS	007	101	23	43	36					70	F7		/8	90				
100IVID	207	191	91	90					0	70	57	00	50					83
109FA									1									83
109RG							3	0	0							85	96	83
109ZC							1		0							85	96	83
110AR	35	28	20	19	18	13	9	-	405	75	67	64	51	52	87	46	70	~ ~ ~
110AK	0	22						/	125	96	00						76	94
110BC	9	20	17	21	27	35	4			00	02	69	55	52	82	46		
110BC			.,			00	•	20	30			00	00	02	02	10	79	88
110CM	17	24	12	10	17	4	3			74	66	75	83	51	81	48		
110CM			-					10	10								78	92
110DC	21	22	9	16	0		70	10		11	69	/2	/9	52	04	00	00	100
111175	22	20 41	37	53 52	9		87	13	0	97	03 73	83	88	94 76	94	99	90	100
112CR		11	53	144	7		07		0	35	10	66	68	10	52	33	32	100
112RG			101	75								84	91					
112TS		. =	31	82		, <u> </u>						84	93	<u> </u>			-	
113MD	149	19	47	160	122	10	28	~	15	68	79	85	81	90	77	74	89	90
113KG	332	52	134	26	198	14	27	6	20	/U 70	- <u>11</u>	// <u>/</u> 0	/8	81	66	66	80	93
114RG	76	35	28	20						79	90	52	49					
115RG	145	100								74	82	~-						
115RG			25									76						
116FS	52	42	30	34	78					95	80	60	59	65				
116MS	42	10	22	4 5	48 210					95	75	60	58 52	60 61				
116RG	66	30	39	42	5/					94	65	62	52 60	68				
116TS	64	20	40	41	55					86	71	60	59	70				
117RG	44	97	59	81						92	97	96	86					
117TS	34	32	27	33						91	96	96	48					
				00 21 U									83 74					
118FS				32.6									/0					
118MS				41.3									/0					
118RG				94									83					

Sito	Gross return per \$						input					Арр	licatio	n effic	iency	(%)		
Sile	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				32									72					
118TS				93									70					
119CR									31									91
					44	7			15					67	02			92
1191VIE 1101/1E					44	/	23	23	67					07	93	71	84	01
119MF					53	5	20	20	07					67	93	71	04	31
119MF						Ū	22	23	45					0.		71	83	91
119RG					28	8								79	93			
119RG							31	12	74							70	83	93
119TS					49	6								74	93			
120CR					15	12	45	10						67	85	67	00	00
1200h 120MB							45	10	00 53							07	80	92
120TA					37	9			00					63	89			02
120TA					•	-	43	13	65							68	80	89
120TC					54	6								59	89			
120TC							44	13	75							68	81	89
121 IS					34	10	00	-	47				00	83	00	00	00	70
122CA				22	21	10	36	5 25	47				82	74	83	83	83	76 75
1220H				11	29	28	112	25	36				82	74	78	78	83	76
122RG				6	7	14	67	7	13				75	69	83	75	83	75
122TS				21	13	5	38	6	20				84	79	78	79	82	75
123AR							25	10	0							95	89	98
123CS					40	6	18	4	0					76	93	94	89	98
123RG					13	13	40	1	0					//	93	83	89	98
12313					23	1	23	1	U					00 Q/	90	90	92	90
124CS					00	14	48							01	95	95		
124ME					90									88				
124ME						3	61								92	92		
125CB						16	20	49							78	77	71	
125CM						31	45	48							80	81	74	
125GE						42 20	30 22	15							00 81	79 81	71	
1250H						12	15	11							80	85	74	
125MP						10	.0	11							80	82	70	
125OH						15	11								78	83		
125TO					_	7	16	31							78	82	69	
125TS				**********************	7	12	16	31						86	78	84	67	
126CA						82	61	42	24						94	91	88	66
127CA						75	88	7	52						86	97	92	66
127CR						68	52	6	42						86	97	92	66
127FL						91	241	12	172						93	97	91	66
127ME						26	44	1	23						86	97	95	66
12/RG						59	119	3	26				j		86	97	92	66
120AR							41	508								90 86	92	
128GR							35	307								94	95	
128GS							35	307								94	95	
129CS									2									83
129FL							51	51	8							89	88	83
12950							20 26		2							91	ბბ 07	83
131CS							50	15	6							09	91	87
131ME								-	2									87
131RG							15									81		
131RG								9	4								92	87
131SS								50	3								91	87
1324R								13	9								90	02
132CJ								10	0								31	92
132CP								21	Ő								90	92
132CH								10.6	9.1								92	92
132MB								04.0	0								~	92
132MS								24.6	62.8								91 92	92 92
13209								18 /	17.5								92 60	92 /1
133MS								33.9	0								59	/1
134F1								-	294									62
134F2									401									55
134M1									17.9									63
134M2									15 /									60 67
1341VI3									56.4									66
10 HVH	L								2.2.1									

0.14		Yie	ld per	volum	e of d	rainag	e (t/M	L)			Cost	of dra	inage	per to	onne o	of fruit	(\$/t)	
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
101CS							2.5									109.6		
101MD	39.3	73.2	10.5	12.5	15.9	18.3	7.0			2.9	1.6	11.0	9.4	7.4	48.7	39.7		
101RG	73.4	56.5	19.9	8.3	8.5	27.4	3.9			1.6	2.4	46.1	13.8	13.5	28.8	70.2		
101TS	68.1	135.8	20.5	17.9	0.8	11.2	5.3			1.7	0.8	5.6	6.6	156.4	74.3	52.1		
102CR						9.0	0.9	1.8							9.6	/4./	39.6	
102FL						26	15		0.0						25.0	45.0		
1021VI2						2.0	1.5	137	0.5						25.9	45.2	52	173 1
102M3						10.0	9.1	5.9	1.3						6.8	7.8	12.0	61.9
102MI							••••		0.7								•	122.3
103CM	51.9	294.8	15.9	2.7						2.0	0.4	6.9	42.5					
103CN			3.7	13.5								30.1	8.5					
103FS	47.6	262.2	4 a =							2.2	0.4							
103IVID	24.5	117.3	19.5	151						4.2	0.9	5.6	15.9					
10300	45.7	104 5	10.0	20.0						2.2	1.5	7.1 5.8	7.0					
104FS	+5.5	104.5	13.0	20.3		16.8	47 1			2.2	1.0	5.0	5.5		15.8	55		
104FS						10.0	.,	46.7	1.5						10.0	0.0	3.5	86.8
104H5						6.0	58.7		-						43.5	4.5		
104H5								44.0	2.4								3.7	52.6
104MS						11.5	54.7								24.9	4.7		
104MS							71.0	7.6	2.4							07	21.2	53.6
104RG							/1.2	56.3	15							3.7	20	28.0
1046G	69	19	5.0	1 0	3.0			50.5	4.5	171	24.7	23.2	63.4	36.8			2.9	20.0
105MD	5.3	4.4	3.8	1.4	1.9					22.2	27.2	30.8	86.0	62.2				
105RG	4.6	7.0	4.9	2.5	1.8					25.8	17.1	24.0	47.2	64.6				
105TS	4.6	5.0	4.1	1.7	1.6					25.4	23.7	28.4	68.8	73.5				
106CM	9.2	21.1								11.8	5.3							
106CR	31.6	100.1								3.4	1.1							
	31.6	100.1								3.4	1.1							
106TS	31.0	99.3								3.4	1.1							
107CR	00	00.0	14.9	8.9	13.8					0		7.4	12.7	8.1				
107FL	30.2	49.4	12.9	21.6	30.6					3.5	2.2	8.5	5.2	3.7				
107MD	14.7	71.3	12.6	8.9	24.0					7.3	1.5	8.7	12.6	4.7				
107RE	19.8	47.5	10.6	19.0	21.3					5.4 2.5	2.3	10.4	9.7	5.0				
107TS	30.2	99.7	8.1	14.3	27.2					5.5	1.1	13.5	79	2.0 4 1				
108MD	15.8	9.0	5.2	4.8						1.9	3.6	6.2	6.8					
109CR									0.1					*****				1728
109FA									0.3								- / -	341.9
109RG							19.2	36.5	0.0							106.0	54.8	4704
110920	11.4	69	63	31	33	22.9	10.1		0.0	11.2	19.2	21.4	45.1	35.7	14.4	99.4		4/24
110AR	11.4	0.5	0.0	0.1	0.0	22.5	1.5	3.4	112.6	11.2	10.2	21.4	40.1	00.7	14.4	55.4	46.6	1.1
110BC	6.0	11.9							-	21.3	11.1							
110BC			6.2	3.8	3.8	13.8	0.6					21.8	36.8	31.3	22.9	313.7		
110BC		5.0	~ ~			4 7		5.3	16.3	05.0	00.4	04.0		00 7	07.0		22.3	7.5
110CM	5.1	5.9	6.2	6.3	3.0	4.7	0.8	E 4	10.0	25.0	22.4	21.6	21.9	39.7	67.9	223.2	20.0	11 /
1100M	73	59	52	89				5.4	10.0	176	22 5	26.0	15.6				29.0	11.4
111RG	181.8	14.6	426.6	0.0	12.8		316.0	38.0		0.6	7.5	0.3	0.0	8.4		0.3	2.9	
111TS	32.5	9.0	20.2	30.0	1.1		643.4			3.3	12.1	5.4	3.6	98.2		0.2		
112CR			4.6	6.9								9.1	6.2					
112RG			21.8	15.0								1.9	2.8					
11215 112MD	0 0	0.0	6.9	28.4	<u> </u>	20.5	20.1		10.2	47	176	6.1	1.5	10	60.7	25.6		1/1
113BG	171	19.9	18.7	12.0	20.1	17.2	12.8	31	15.6	22	20	21	3.4	1.0	61.4	35.6	86.3	74
114MS	21.4	57.4	3.7	3.3			0	0		5.5	2.1	32.9	37.5		•			
114RG	17.9	30.3	5.1	3.3						6.5	4.0	23.8	37.3					
115RG	7.5	22.8	- L							3.0	1.1							
115RG	64.2	10.0	1.8	<u>ח כי</u>	0 1					٦ ٥	0.6	14.2		176				
1161/9	42.3	4.5	4.0 3.0	3.0 0.5	0.4 7 1					23	9.0 21 6	24.3 32 8	194.4	13.8				
116NC			0.0	0.4	5.4					2.0		52.0	31.3	3.6				
116RG	57.1	6.5	5.9	3.8	9.2					1./	15.0	16.3	25.6	10.6				
116TS	25.0	5.5	4.6	3.7	8.1					3.8	17.8	21.0	26.6	12.0				
117RG	39.9	239.0	130.0	31.2						2.8	0.5	0.9	3.5					
11/IS	26./	5/.1	01.C	4.9						4.2	2.0	2.2	23.3					
118CB				5.67									14.2					
118FS				5.23									15.4					
118MS				5.27									15.3					
118RG				18.9									4.3					

Cite		Yie	ld per	volum	e of d	rainag	ge (t/M	L)			Cost	of dra	inage	per to	nne o	f fruit	(\$/t)	
Site	2003	2004	2005	2006	2007	2008	2009	2010	2011	2003	2004	2005	2006	2007	2008	2009	2010	2011
118RS				4.4									18.4					
118TS				15.2									5.3					
119CR									22.4									6.2
					0.6	07.0			11.8					11.0	20.1			11.7
1191VIE					9.0	27.0	95	125	10 1					11.2	20.1	23.0	177	28
119MF					11.9	17.2	5.5	12.5	43.1					9.3	32.4	20.0	17.7	2.0
119MF						=	9.1	11.9	32.7					0.0	0	24.1	18.4	4.3
119RG					11.8	37.3								9.2	14.2			
119RG							11.1	9.7	77.8							19.4	22.6	1.8
119TS					16.8	26.2								6.4	21.3			
120CR					2.4	17.3	15.2	0.0	10.0					43.9	28.1	14.0	01 5	20
1200R							15.5	9.9	49.0							14.0	21.5	2.0
120TA					5.4	20.4			01.0					19.9	23.6			0.0
120TA							16.1	8.2	41.3							13.4	25.6	2.8
120TC					7.2	17.6								15.0	32.6			
120TC					00.0		16.3	8.9	48.3				¢.	e		13.2	24.1	2.9
12115				4	20.8	10	157	20.2	12.0				06.1	5.7	26.0	7 5	20.6	0.0
122CR				4	2.3	23.9	15.7	20.2	74				20.1	48.9	20.2	7.5	39.0 7 1	9.0
122MS				3.2	6.9	11.3	31.1	6.2	9.0				34.7	16.1	9.8	3.8	128.0	14.0
122RG				1.4	1.8	5.4	14.4	7.3	3.4				81.6	62.0	20.5	8.2	39.5	37.3
122TS				6.6	3.5	8.2	11.7	4.8	4.8				16.7	31.8	13.5	10.1	24.8	26.3
123AR		•••••••	*				52.4	12.3	0.0				*****			6.5	31.7	
123CS					8.6	18.7	36.4	7.0	0.0					12.9	24.6	9.5	55.9	
123RG					4.4	51.8	40.0	2.8	0.0					25.1	12.9	8.0	137.9	
12313 124CS					59.8	55.4	34.1	20.0	0.0					14	13.0	5.0	19.0	
124CS					00.0	136.6	101.4								5.9	2.4		
124ME					27.1		-							3.1				
124ME						44.3	41.9								64.0	2.3		
125CB						9.8	13.1	7.1							40.2	23.9	17.7	
125CIVI						22.6	32.8	7.8							19.1	9.6	16.2	
125GB						28.5	20.5	4.0							15.2	15.0	31.6	
125MH						15.9	17.3	2.5							27.2	18.0	51.3	
125MP						12.9	8.3	2.1							33.5	37.1	60.1	
125OH						13.6	10.2								29.0	31.1		
12510					~ ~	5.9	15.3	6.2						20.0	66.2	20.7	21.0	
12515 126CA					2.9	98.1	40.8	0.0 18.8						30.9	35.4	25	22.5	
127AR						00.1	172.2	39.8	3.4						1.0	0.7	19.8	37.6
127CA						43.1	265.9	57.3	9.4						2.7	0.4	13.6	12.2
127CR						19.8	91.5	19.6	6.7						5.8	1.2	39.6	19.0
12/FL						58.7	361.8	58.6	18.8						1.9	0.3	13.2	6.7
1271VIE 127RG						29.1	206.9	20.0 18.4	4.1						0.5 4 0	0.6	30.2 42.8	25.5
128AR						20.1	200.0	11.3	0.0						1.0	0.0	2.3	20.0
128CR							28.0	37.4								9.5	0.6	
128GR							89.6	67.1								3.9	0.4	
128GS							89.6	67.1								3.9	0.4	146.0
12903 129Fl							54.9	27.8	2.7							4.6	5.7	47.3
129SO							31.6	13.1	0.8							7.9	12.2	151.0
130SR							43.0	125.6								5.9	1.2	
131CS						_	_	9.4	3.0		_		_	_	_	_	17.5	43.0
131RG							175		1.5							14 ዓ		00.3
131RG							.7.5	10.1	2.9							14.0	17.6	45.0
131SS								48.6	1.8								3.4	70.6
131YG								11.6									14.4	
132AR								12.8	3.6								23.7	36.8
1320J								21 5	0.0								110	
132CH								12.7	6.8								24.6	19.4
132MB									0.0									
132MS								32.0	51.1								9.2	2.6
132RG								44.0	15.6								/.1	8.4
1330S								3.U 4 /	0.0								38.7 25.8	
134F1								т.1	8.8								_0.0	4.6
134F2									10.1									4.0
134M1									1.11									36.3
134M2									0									10 -
1341VI3									3.87									40.5
10 TIVE									5.51									

D. Interpretation of box plots

A box plot is an excellent tool for illustrating the distribution and location of performance indicators for the sites under study. It is very efficient and useful for identifying outliers and for comparing distributions. The figure below describes the different components of a box plot regularly used throughout this report.

IR: Inter-quartile range, i.e. 75th percentile - 25th percentile.

ISBN 978-1-74264-684-8 (print)

ISBN 978-1-74264-685-5 (online)